Published by Patrick Mutisya · 14 days ago
Understand that amount of substance is an SI base quantity with the base unit mol.
The mole is defined as the amount of substance that contains exactly \$N_{\mathrm A}=6.02214076\times10^{23}\$ elementary entities (atoms, molecules, ions, electrons, …). This number is the Avogadro constant.
For a pure substance the mass \$m\$ of one mole is called the molar mass \$M\$, expressed in \$\mathrm{g\,mol^{-1}}\$.
\$\$
n = \frac{m}{M}
\$\$
where \$n\$ is the amount of substance in moles.
| Substance | Formula | Molar Mass \$M\$ (g·mol⁻¹) |
|---|---|---|
| Hydrogen gas | H\$_2\$ | 2.016 |
| Oxygen gas | O\$_2\$ | 31.998 |
| Carbon dioxide | CO\$_2\$ | 44.009 |
| Water | H\$_2\$O | 18.015 |
| Sodium chloride | NaCl | 58.44 |
First calculate the number of moles:
\$\$
n = \frac{5.00\ \mathrm{g}}{18.015\ \mathrm{g\,mol^{-1}}}=0.277\ \mathrm{mol}
\$\$
Then multiply by Avogadro’s number:
\$\$
N = n\,N_{\mathrm A}=0.277\times6.022\times10^{23}=1.67\times10^{23}\ \text{molecules}
\$\$
\$\$
m = nM = 2.5\ \mathrm{mol}\times44.009\ \mathrm{g\,mol^{-1}}=110.0\ \mathrm{g}
\$\$
In the ideal‑gas equation \$pV=nRT\$, the variable \$n\$ is the amount of substance in moles. This demonstrates how the mole links pressure, volume, and temperature to a count of particles.