Published by Patrick Mutisya · 14 days ago
Linear momentum is a vector quantity defined for a particle of mass \$m\$ moving with velocity \$\mathbf{v}\$ as
\$\mathbf{p}=m\mathbf{v}\$
Its direction is the same as the velocity vector. The principle of conservation of linear momentum states that, in the absence of external forces, the total momentum of a closed system remains constant.
\$\sum{i=1}^{n}\mathbf{p}{i,\text{initial}} = \sum{i=1}^{n}\mathbf{p}{i,\text{final}}\$
provided the net external force is zero.
Consider two objects, \$A\$ and \$B\$, moving along a straight line. Let \$mA\$, \$uA\$ and \$mB\$, \$uB\$ be their masses and initial velocities, and \$vA\$, \$vB\$ their velocities after the collision.
\$mA uA + mB uB = mA vA + mB vB\$
In addition to momentum conservation, kinetic energy is conserved:
\$\$\frac{1}{2}mA uA^{2} + \frac{1}{2}mB uB^{2}
= \frac{1}{2}mA vA^{2} + \frac{1}{2}mB vB^{2}\$\$
Solving the two equations simultaneously gives:
\$vA = \frac{(mA - mB)uA + 2mB uB}{mA + mB}\$
\$vB = \frac{(mB - mA)uB + 2mA uA}{mA + mB}\$
Objects stick together after impact, so \$vA = vB = v\$.
\$v = \frac{mA uA + mB uB}{mA + mB}\$
Momentum must be conserved in each independent direction (usually \$x\$ and \$y\$). For objects \$A\$ and \$B\$:
\$\$\begin{aligned}
mA \mathbf{u}A + mB \mathbf{u}B &= mA \mathbf{v}A + mB \mathbf{v}B \\
\text{or}\quad
\begin{cases}
mA u{Ax} + mB u{Bx} = mA v{Ax} + mB v{Bx} \\
mA u{Ay} + mB u{By} = mA v{Ay} + mB v{By}
\end{cases}
\end{aligned}\$\$
When the collision is elastic, kinetic energy is also conserved in the same way as for 1‑D collisions.
Problem: A 0.5 kg ball moving at \$4\ \text{m s}^{-1}\$ collides elastically with a stationary 0.2 kg ball. Find the speeds of both balls after the collision.
Solution:
\$v_A = \frac{(0.5-0.2)4 + 2(0.2)(0)}{0.5+0.2}= \frac{0.3\times4}{0.7}= \frac{1.2}{0.7}\approx1.71\ \text{m s}^{-1}\$
\$v_B = \frac{(0.2-0.5)0 + 2(0.5)(4)}{0.5+0.2}= \frac{4.0}{0.7}\approx5.71\ \text{m s}^{-1}\$
Problem: A 2.0 kg puck moving at \$3\ \text{m s}^{-1}\$ east collides with a 1.0 kg puck moving at \$2\ \text{m s}^{-1}\$ north. The pucks stick together. Find the speed and direction of the combined mass after the collision.
Solution:
\$p_{x,\text{initial}} = (2.0)(3) + (1.0)(0) = 6\ \text{kg·m s}^{-1}\$
\$p_{y,\text{initial}} = (2.0)(0) + (1.0)(2) = 2\ \text{kg·m s}^{-1}\$
\$vx = \frac{p{x,\text{initial}}}{M} = \frac{6}{3}=2\ \text{m s}^{-1}\$
\$vy = \frac{p{y,\text{initial}}}{M} = \frac{2}{3}\approx0.67\ \text{m s}^{-1}\$
\$v = \sqrt{vx^{2}+vy^{2}} = \sqrt{2^{2}+0.67^{2}}\approx2.11\ \text{m s}^{-1}\$
\$\theta = \tan^{-1}\!\left(\frac{vy}{vx}\right)=\tan^{-1}\!\left(\frac{0.67}{2}\right)\approx18.4^{\circ}\$
| Collision Type | Momentum Conservation | Kinetic Energy | Final‑velocity Formula (1‑D) |
|---|---|---|---|
| Elastic | Conserved | Conserved | \$vA = \dfrac{(mA - mB)uA + 2mB uB}{mA + mB}\$ \$vB = \dfrac{(mB - mA)uB + 2mA uA}{mA + mB}\$ |
| Perfectly Inelastic | Conserved | Not conserved (maximum loss) | \$v = \dfrac{mA uA + mB uB}{mA + mB}\$ |
| General Inelastic (objects separate) | Conserved | Not conserved | Use momentum equations in each direction; solve with given information. |