| Syllabus Block | Covered in These Notes | Key Concepts Added / Expanded |
|---|---|---|
| 1 Physical quantities & units | ✓ | Sidebar on SI units, prefixes, dimensional checks, and basic error propagation. |
| 2 Kinematics | ✓ | Derivation of the classical Doppler shift from source/observer motion (v = dx/dt). |
| 3 Dynamics | ✓ | Momentum of photons (p = E/c) and its relevance to red‑shift. |
| 4 Forces, density & pressure | – | Only a brief note on pressure broadening (optional). |
| 5 Work, energy & power | ✓ | Link between luminosity and energy per unit time (L = dE/dt). |
| 6 Deformation of solids | – | Not required for this topic. |
| 7 Waves – Doppler effect for light | ✓ | Full non‑relativistic & relativistic formulas, comparison with sound, limits, and worked low‑velocity example. |
| 8 Superposition & interference | ✓ | Explanation of how diffraction gratings produce spectra (superposition of wavefronts). |
| 9 Quantum physics – photon energy | ✓ | E = hc/λ and its connection to wavelength shift. |
| 22 Quantum physics – photon energy (E = hc/λ) | ✓ | Same as above – reinforced in the energy section. |
| 23 Nuclear physics – mass–energy relation (E = mc²) | ✓ | Brief mention when discussing the origin of stellar energy. |
| AO1, AO2, AO3 | ✓ | Explicit links to required assessment objectives throughout. |
\[
\sigmaf=\sqrt{\left(\frac{\partial f}{\partial x}\sigmax\right)^2+\left(\frac{\partial f}{\partial y}\sigma_y\right)^2+\dots}
\]
For a source moving directly away from the observer, the distance between successive wave‑crests changes at a rate equal to the relative speed vr. If the source emits at frequency f₀ (period T₀ = 1/f₀), the observed period is
\[
T{\text{obs}} = T0\left(1+\frac{v_r}{c}\right)
\]
Since λ = c T, the observed wavelength becomes
\[
\lambda{\text{obs}} = \lambda0\left(1+\frac{v_r}{c}\right)
\]
This is the classical (non‑relativistic) Doppler shift for light.
Photon energy and momentum are related by
\[
E = h f = \frac{h c}{\lambda}, \qquad p = \frac{E}{c} = \frac{h}{\lambda}
\]
A red‑shift (increase in λ) therefore reduces photon momentum, consistent with the source losing kinetic energy in the observer’s frame.
A diffraction grating consists of many equally spaced slits. Constructive interference occurs when the path‑difference equals an integer multiple of the wavelength:
\[
d\sin\theta = m\lambda \quad (m = 0, \pm1, \pm2,\dots)
\]
Measuring the angle θ for a known order m gives λ, which is the basis of spectrographs used in the laboratory and in astronomy.
\[
\frac{\Delta\lambda}{\lambda0} = \frac{\lambda{\text{obs}}-\lambda0}{\lambda0}= \frac{v_r}{c}
\]
Useful for stars in our Galaxy (v ≲ 300 km s⁻¹ ≈ 10⁻³c).
\[
\frac{\lambda{\text{obs}}}{\lambda0}= \sqrt{\frac{1+vr/c}{1-vr/c}}
\]
Reduces to the non‑relativistic expression when v ≪ c. Required for distant galaxies where v can be a few % of c.
| Medium | Formula | Key Difference |
|---|---|---|
| Sound (v ≪ cₛ) | \(\displaystyle \frac{\Delta f}{f0}= \frac{vr}{c_s}\) | Source and observer both affect the shift because the medium provides a reference frame. |
| Light (vacuum) | \(\displaystyle \frac{\Delta\lambda}{\lambda0}= \frac{vr}{c}\) (non‑relativistic) | No medium; only relative motion matters. Relativistic correction needed at high v. |
Suppose a nearby star shows Hα (rest λ₀ = 656.28 nm) at 656.45 nm.
\[
\Delta\lambda = 0.17\ \text{nm},\qquad
vr = c\frac{\Delta\lambda}{\lambda0}=3.00\times10^5\frac{0.17}{656.28}=78\ \text{km s}^{-1}
\]
Uncertainty (σΔλ = 0.02 nm):
\[
\sigmav = c\frac{\sigma{\Delta\lambda}}{\lambda_0}=3.00\times10^5\frac{0.02}{656.28}\approx 9\ \text{km s}^{-1}
\]
Photon energy:
\[
E = \frac{h c}{\lambda}
\]
Because λ increases, E decreases. For the Hα example above:
\[
E_{\text{rest}} = \frac{6.626\times10^{-34}\times3.00\times10^8}{656.28\times10^{-9}}=3.03\times10^{-19}\ \text{J}
\]
\[
E_{\text{obs}} = \frac{6.626\times10^{-34}\times3.00\times10^8}{656.45\times10^{-9}}=3.02\times10^{-19}\ \text{J}
\]
The tiny energy loss corresponds to the kinetic energy transferred to the expanding Universe (cosmological red‑shift) or to the relative motion (Doppler red‑shift).
\(\lambda = a p + b\).
| Element | Transition | Laboratory λ (nm) |
|---|---|---|
| Mercury | λ1 | 404.66 |
| Argon | λ2 | 696.54 |
| Neon | λ3 | 703.24 |
\[
\sigma{\lambda}= \sqrt{(a\,\sigma{p})^{2}+ \sigma_{\text{sys}}^{2}}
\]
| Line | Rest λ₀ (nm) | Measured λobs (nm) | Δλ (nm) | vr (km s⁻¹) | σv (km s⁻¹) |
|---|---|---|---|---|---|
| Hα | 656.28 | 658.00 ± 0.03 | 1.72 ± 0.03 | 785 | ≈ 14 |
| Ca K | 393.37 | 394.20 ± 0.04 | 0.83 ± 0.04 | 632 | ≈ 30 |
| Na D | 589.59 | 590.80 ± 0.02 | 1.21 ± 0.02 | 615 | ≈ 10 |
Using the non‑relativistic formula (valid for \(v \lesssim 0.01c\)):
\[
v{r}=c\,\frac{\Delta\lambda}{\lambda{0}}
\]
Uncertainty propagation:
\[
\sigma{v}=c\sqrt{\left(\frac{\sigma{\Delta\lambda}}{\lambda_{0}}\right)^{2}
+\left(\frac{\Delta\lambda\,\sigma{\lambda{0}}}{\lambda_{0}^{2}}\right)^{2}}
\]
Because laboratory wavelengths are known to < 0.001 nm, the dominant term is \(\sigma_{\Delta\lambda}\).
If the object belongs to a galaxy whose recession follows Hubble’s law:
\[
d=\frac{v{r}}{H{0}},\qquad H_{0}=70\ \text{km s}^{-1}\,\text{Mpc}^{-1}
\]
Uncertainty:
\[
\sigma{d}=d\sqrt{\left(\frac{\sigma{v}}{v_{r}}\right)^{2}
+\left(\frac{\sigma{H}}{H{0}}\right)^{2}},\qquad\sigma_{H}\approx5\ \text{km s}^{-1}\,\text{Mpc}^{-1}
\]
\[
M = m - 5\log_{10}\!\left(\frac{d}{10\ \text{pc}}\right)
\]
where \(M\) is the absolute magnitude.
\[
\frac{L}{L{\odot}} = 10^{(M{\odot}-M)/2.5},\qquad M_{\odot}=4.74
\]
and \(L_{\odot}=3.828\times10^{26}\ \text{W}\).
\(\sigma{\log x}= \sigmax/(x\ln10)\).
Stefan‑Boltzmann law:
\[
L = 4\pi R^{2}\sigma T_{\text{eff}}^{4}
\]
Re‑arranged for radius:
\[
R = \sqrt{\frac{L}{4\pi\sigma T_{\text{eff}}^{4}}}
\]
Uncertainty (independent errors):
\[
\frac{\sigma{R}}{R}= \frac12\sqrt{\left(\frac{\sigma{L}}{L}\right)^{2}
+ \left(4\frac{\sigma{T}}{T{\text{eff}}}\right)^{2}}
\]
\[
v_{r}=3.00\times10^{5}\frac{1.72}{656.28}=785\ \text{km s}^{-1}
\]
\[
\sigma_{v}=3.00\times10^{5}\frac{0.03}{656.28}\approx14\ \text{km s}^{-1}
\]
\[
d=\frac{785}{70}=11.2\ \text{Mpc}
\]
\[
\sigma_{d}=11.2\sqrt{\left(\frac{14}{785}\right)^{2}+\left(\frac{5}{70}\right)^{2}}\approx1.0\ \text{Mpc}
\]
Distance modulus → \(M=-20.3\pm0.2\).
\[
L = 10^{(4.74-(-20.3))/2.5}L_{\odot}=2.5\times10^{28}\ \text{W}
\]
\(\sigma_{L}\approx0.2L\) (from σM).
\[
R=\sqrt{\frac{2.5\times10^{28}}{4\pi(5.67\times10^{-8})(8000)^{4}}}=1.2\times10^{9}\ \text{m}=1.7\,R_{\odot}
\]
\[
\frac{\sigma_{R}}{R}= \frac12\sqrt{(0.2)^{2}+(4\times0.025)^{2}}\approx0.12
\]
\(\sigma{R}\approx0.2\,R{\odot}\).

Your generous donation helps us continue providing free Cambridge IGCSE & A-Level resources, past papers, syllabus notes, revision questions, and high-quality online tutoring to students across Kenya.