\$y1(x,t)=A\sin(kx-\omega t),\qquad y2(x,t)=A\sin(kx+\omega t)\$
\$y(x,t)=y1+y2=2A\cos(kx)\sin(\omega t)\$
| System | End condition (displacement) | Allowed wavelengths | Fundamental \$\lambda_1\$ |
|---|---|---|---|
| String (or air column) fixed at both ends | Node – Node (N–N) | \$\displaystyle \lambda_n=\frac{2L}{n}\qquad n=1,2,3,\dots\$ | \$\lambda_1=2L\$ |
| Open–open pipe (or string with both ends free) | Antinode – Antinode (A–A) | \$\displaystyle \lambda_n=\frac{2L}{n}\qquad n=1,2,3,\dots\$ | \$\lambda_1=2L\$ |
| Open–closed pipe (or string fixed at one end, free at the other) | Node – Antinode (N–A) | \$\displaystyle \lambda_n=\frac{4L}{2n-1}\qquad n=1,2,3,\dots\$ | \$\lambda_1=4L\$ |
| Closed–closed pipe (pressure nodes) | Node – Node (N–N) for pressure, Antinode – Antinode for displacement | Same as fixed–fixed: \$\lambda_n=2L/n\$ | \$\lambda_1=2L\$ |
End‑corrections (practical note): For air columns the effective length is \$L{\rm eff}=L+0.6r\$ (open end) or \$L{\rm eff}=L+0.3r\$ (closed end), where \$r\$ is the pipe radius. Include this when comparing measured and theoretical \$\lambda\$.
From the geometry in section 2:
If \$N\$ equal node‑to‑node intervals are measured over a length \$L_{\rm meas}\$,
\$L{\rm meas}=N\frac{\lambda}{2}\;\Longrightarrow\;\lambda=\frac{2L{\rm meas}}{N}.\$
Uncertainty propagation (AO3) – for \$\lambda =2d\$,
\$\Delta\lambda =2\,\Delta d,\$
and for \$\lambda =\dfrac{2L_{\rm meas}}{N}\$,
\$\Delta\lambda =\frac{2}{N}\,\Delta L_{\rm meas}.\$
Include systematic uncertainties (e.g. end‑correction, ruler calibration) in the final error budget.
For any wave \$v = f\lambda\$.
\$\$f_n=\frac{nv}{2L}\;(N\!-\!N),\qquad
f_n=\frac{(2n-1)v}{4L}\;(N\!-\!A).\$\$
Worked example: A laser (\$\lambda=632.8\,\$nm) passes through a slit \$a=0.10\,\$mm. Find the angle to the first dark fringe.
\$\sin\theta=\frac{\lambda}{a}= \frac{6.328\times10^{-7}}{1.0\times10^{-4}}=6.33\times10^{-3}\;\Rightarrow\;\theta\approx0.36^{\circ}.\$
Worked example: \$d=0.30\,\$mm, \$D=2.00\,\$m, \$\lambda=500\,\$nm. Find the separation of the \$n=2\$ bright fringe from the central maximum.
\$y_2=\frac{2\lambda D}{d}= \frac{2(5.0\times10^{-7})(2.0)}{3.0\times10^{-4}}=6.7\times10^{-3}\,\text{m}=6.7\,\$mm.
Worked example: A grating has \$600\$ lines cm\$^{-1}\$. Light of unknown wavelength produces a first‑order maximum at \$\theta=20^{\circ}\$. Find \$\lambda\$.
Grating spacing \$d=1/(600\times10^{2})=1.67\times10^{-6}\,\$m.
\$\lambda = d\sin\theta = 1.67\times10^{-6}\sin20^{\circ}=5.7\times10^{-7}\,\text{m}=570\,\$nm.
Length \$L=1.20\,\$m. Measured distance between the first and third nodes \$=0.45\,\$m.
Pipe length \$L=1.20\,\$m. Distance between two consecutive antinodes \$d_{AA}=0.30\,\$m.
Physical length \$L=0.80\,\$m, radius \$r=0.010\,\$m. Measured node‑to‑node distance \$d_{NN}=0.18\,\$m.
| Configuration | Measured distance | Relation to \$\lambda\$ | Formula for \$\lambda\$ |
|---|---|---|---|
| Successive nodes (or antinodes) | \$d{NN}=d{AA}\$ | \$d=\lambda/2\$ | \$\lambda=2d\$ |
| Node to adjacent antinode | \$d_{NA}\$ | \$d=\lambda/4\$ | \$\lambda=4d\$ |
| Fixed–fixed string (fundamental) | Length \$L\$ | \$L=\lambda/2\$ | \$\lambda=2L\$ |
| Open–closed pipe (fundamental) | Length \$L\$ | \$L=\lambda/4\$ | \$\lambda=4L\$ |
| Open–open or closed–closed pipe (fundamental) | Length \$L\$ | \$L=\lambda/2\$ | \$\lambda=2L\$ |
| Single‑slit diffraction (first minimum) | Slit width \$a\$, angle \$\theta\$ | \$a\sin\theta=\lambda\$ | \$\lambda=a\sin\theta\$ |
| Double‑slit interference (bright fringe \$n\$) | Separation \$d\$, screen distance \$D\$, fringe position \$y_n\$ | \$y_n=\dfrac{n\lambda D}{d}\$ | \$\lambda=\dfrac{y_n d}{n D}\$ |
| Diffraction grating (order \$n\$) | Grating spacing \$d\$, angle \$\theta\$ | \$d\sin\theta=n\lambda\$ | \$\lambda=\dfrac{d\sin\theta}{n}\$ |
Answer: \$d{NN}=0.225\,\$m → \$\lambda=2d{NN}=0.45\,\$m.
Answer: \$\lambda=2d_{AA}=0.60\,\$m → \$n=4\$ (fourth harmonic).
Answer: \$\lambda\$ from \$d{NN}=0.36\,\$m, from \$d{NA}=0.72\,\$m → average \$0.54\,\$m (consistent with \$n=3\$ if \$L_{\rm eff}\approx0.81\,\$m).
Answer: \$\lambda=a\sin\theta=2.0\times10^{-4}\times\sin2^{\circ}=6.98\times10^{-6}\,\$m \$=698\,\$nm.
Answer: \$\lambda=\dfrac{y_3 d}{3D}= \dfrac{9.0\times10^{-3}\times4.0\times10^{-4}}{3\times1.5}=8.0\times10^{-7}\,\$m \$=800\,\$nm.
Sketch a standing wave on a string showing:
This diagram is useful for answering “identify the node‑to‑node distance” and “show how you would calculate \$\lambda\$” in exam questions.
Your generous donation helps us continue providing free Cambridge IGCSE & A-Level resources, past papers, syllabus notes, revision questions, and high-quality online tutoring to students across Kenya.