Published by Patrick Mutisya · 14 days ago
Understand that an object moving against a resistive force may reach a terminal (constant) velocity.
\$\mathbf{F}_{\text{net}} = \frac{d\mathbf{p}}{dt}\$
For constant mass, this reduces to \$\mathbf{F}_{\text{net}} = m\mathbf{a}.\$
Momentum \$\mathbf{p}\$ is a vector quantity defined as \$\mathbf{p}=m\mathbf{v}.\$
From Newton’s second law, the change in momentum over a time interval \$\Delta t\$ is related to the impulse \$J\$:
\$J = \int{t1}^{t_2}\mathbf{F}\,dt = \Delta\mathbf{p}.\$
Consider an object of mass \$m\$ falling vertically through a fluid (air, water, etc.). The forces are:
| Force | Direction | Expression |
|---|---|---|
| Weight | Downwards | \$\mathbf{W}=mg\$ |
| Resistive (drag) force | Upwards (opposes motion) | \$\mathbf{F}d = kv\$ (linear) or \$\mathbf{F}d = \tfrac12 C\rho A v^{2}\$ (quadratic) |
When the object reaches terminal velocity \$v_t\$, its acceleration becomes zero, so the net force is zero:
\$mg - Fd = 0 \quad\Longrightarrow\quad mg = Fd.\$
For a linear resistive force \$Fd = kv\$, solving for \$vt\$ gives:
\$v_t = \frac{mg}{k}.\$
For a quadratic drag \$F_d = \tfrac12 C\rho A v^{2}\$, the terminal speed is:
\$v_t = \sqrt{\frac{2mg}{C\rho A}}.\$
Solution:
\$v_t = \frac{mg}{k} = \frac{0.15 \times 9.81}{0.025} \approx 58.9\;\text{m s}^{-1}.\$
| Concept | Equation | When to Use |
|---|---|---|
| Momentum | \$\mathbf{p}=m\mathbf{v}\$ | Any moving object |
| Newton’s 2nd law (general) | \$\mathbf{F}_{\text{net}} = \dfrac{d\mathbf{p}}{dt}\$ | Variable mass or changing velocity |
| Newton’s 2nd law (constant mass) | \$\mathbf{F}_{\text{net}} = m\mathbf{a}\$ | Mass does not change |
| Linear drag | \$F_d = kv\$ | Low speeds, laminar flow |
| Quadratic drag | \$F_d = \tfrac12 C\rho A v^{2}\$ | Higher speeds, turbulent flow |
| Terminal velocity (linear) | \$v_t = \dfrac{mg}{k}\$ | When \$F_d = kv\$ |
| Terminal velocity (quadratic) | \$v_t = \sqrt{\dfrac{2mg}{C\rho A}}\$ | When \$F_d = \tfrac12 C\rho A v^{2}\$ |