assess the uncertainty in a derived quantity by simple addition of absolute or percentage uncertainties

Contents (Cambridge IGCSE/A‑Level Physics 9702)

  1. 1.1 Physical quantities & SI units
  2. 1.2 Prefixes, derived units & dimensional analysis
  3. 1.3 Errors, uncertainties & error propagation
  4. 1.4 Scalars & vectors
  5. 2 Kinematics
  6. 3 Dynamics & forces
  7. 4 Work, energy & power
  8. 5 Waves & superposition
  9. 6 Electricity (basic circuits)
  10. 7 DC circuits (Kirchhoff, potential dividers)
  11. 8 Particle physics (AS)
  12. A‑Level extensions (topics 12‑25)
  13. Practical skills (AO3)


1.1 Physical quantities & SI units

  • Base quantities (7): length (m), mass (kg), time (s), electric current (A), thermodynamic temperature (K), amount of substance (mol), luminous intensity (cd).
  • Derived quantities are expressed as products or quotients of base units (e.g. speed = m s⁻¹, force = kg m s⁻² = N).
  • When writing a measurement:

    • Include the unit.
    • Give the value to the correct number of significant figures (see § 1.3).

1.2 Prefixes, derived units & dimensional analysis

PrefixSymbolFactor
kilok10³
centic10⁻²
millim10⁻³
microµ10⁻⁶
nanon10⁻⁹

Dimensional analysis: before substituting numbers, check that each term in an equation has the same dimensions (e.g. [MLT⁻²] for force). This guards against algebraic errors and helps identify the form of a required relationship.

1.3 Errors, uncertainties & error propagation

Key terminology

  • Absolute uncertainty (Δx): the ± value expressed in the same units as the measurement.
  • Relative (percentage) uncertainty: \(\displaystyle \frac{\Delta x}{x}\times100\%\).
  • Random error: causes scatter; reduced by repeated measurements and averaging.
  • Systematic error: shifts all results in the same direction; must be identified and corrected.
  • Significant figures in uncertainties: keep 1 sf (or 2 sf if the first is 1); round the final result to the same decimal place as the uncertainty.

Simple propagation rules (AS level)

OperationRule for uncertainties
Addition / subtraction (z = a ± b)Absolute uncertainties add:
\(\displaystyle \Delta z = \Delta a + \Delta b\)
Multiplication / division (z = a × b or z = a ⁄ b)Percentage uncertainties add:
\(\displaystyle \frac{\Delta z}{z}\times100\% = \frac{\Delta a}{a}\times100\% + \frac{\Delta b}{b}\times100\%\)
Power or root (z = aⁿ)Relative uncertainty multiplied by \(|n|\):
\(\displaystyle \frac{\Delta z}{z}\times100\% = |n|\,\frac{\Delta a}{a}\times100\%\)

Partial‑derivative method (A‑Level)

For a function \(z = f(a,b,\dots )\) the combined uncertainty is

\[

\Delta z = \sqrt{\left(\frac{\partial f}{\partial a}\Delta a\right)^{2}

+\left(\frac{\partial f}{\partial b}\Delta b\right)^{2}

+\dots }.

\]

Step‑by‑step procedure for a derived quantity

  1. Write each measured value with its absolute uncertainty.
  2. Identify the mathematical relationship (e.g. \(z = a b / c\)).
  3. Choose the appropriate rule(s) – addition/subtraction, multiplication/division, power/root, or the partial‑derivative method.
  4. Calculate the percentage (or absolute) uncertainty of the result.
  5. If a percentage was found, convert it to an absolute uncertainty.
  6. Round the uncertainty to 1 sf (2 sf if the first digit is 1). Round the result to the same decimal place.

Worked examples (AS level)

Example 1 – Simple addition

Measurements:

  • \(L_{1}=12.3\ \text{cm} \pm 0.2\ \text{cm}\)
  • \(L_{2}=8.7\ \text{cm} \pm 0.1\ \text{cm}\)

\[

\Delta L = \Delta L{1} + \Delta L{2}=0.2+0.1=0.3\ \text{cm}

\]

\[

L = 12.3 + 8.7 = 21.0\ \text{cm}

\]

\[

\boxed{L = 21.0\ \text{cm} \pm 0.3\ \text{cm}}

\]

Example 2 – Multiplication (density)

Given:

  • \(m = 50.0\ \text{g} \pm 0.2\ \text{g}\) (percentage = 0.4 %)
  • \(V = 20.0\ \text{cm}^{3} \pm 0.5\ \text{cm}^{3}\) (percentage = 2.5 %)

Density \(\rho = m/V\).

Percentage uncertainties add:

\[

\frac{\Delta\rho}{\rho}\times100\% = 0.4\% + 2.5\% = 2.9\%

\]

\[

\rho = \frac{50.0}{20.0}=2.50\ \text{g cm}^{-3}

\]

\[

\Delta\rho = 2.9\%\times2.50 = 0.0725\ \text{g cm}^{-3}\approx0.07\ \text{g cm}^{-3}

\]

\[

\boxed{\rho = 2.50\ \text{g cm}^{-3} \pm 0.07\ \text{g cm}^{-3}}

\]

Example 3 – Power of a measured quantity

Speed from a free‑fall experiment: \(v = \sqrt{2gh}\).

  • \(g = 9.81\ \text{m s}^{-2}\) (taken as exact)
  • \(h = 1.20\ \text{m} \pm 0.02\ \text{m}\) (percentage = 1.7 %)

Since \(v \propto h^{1/2}\):

\[

\frac{\Delta v}{v}\times100\% = \tfrac12 \times 1.7\% = 0.85\%

\]

\[

v = \sqrt{2\times9.81\times1.20}=4.85\ \text{m s}^{-1}

\]

\[

\Delta v = 0.85\%\times4.85 = 0.041\ \text{m s}^{-1}\approx0.04\ \text{m s}^{-1}

\]

\[

\boxed{v = 4.85\ \text{m s}^{-1} \pm 0.04\ \text{m s}^{-1}}

\]

Example 4 – Partial‑derivative method (A‑Level)

Work done: \(W = Fd\cos\theta\).

  • \(F = 12.0\ \text{N} \pm 0.3\ \text{N}\)
  • \(d = 0.45\ \text{m} \pm 0.01\ \text{m}\)
  • \(\theta = 30^{\circ} \pm 2^{\circ}\) (convert to radians: \(\Delta\theta = 2^{\circ}\times\pi/180 = 0.035\ \text{rad}\))

\[

\Delta W = \sqrt{(d\cos\theta\,\Delta F)^{2}

+(F\cos\theta\,\Delta d)^{2}

+(Fd\sin\theta\,\Delta\theta)^{2}}

= 0.38\ \text{J}\;(≈0.4\ \text{J})

\]

\[

W = 12.0\times0.45\times\cos30^{\circ}=9.8\ \text{J}

\]

\[

\boxed{W = 9.8\ \text{J} \pm 0.4\ \text{J}}

\]

Common pitfalls

  • Adding percentage uncertainties for addition/subtraction – incorrect.
  • Forgetting to convert angle uncertainties to radians when using the derivative method.
  • Rounding intermediate results before the final uncertainty is evaluated.

Decision flowchart (text version)

  1. Is the expression formed only by addition/subtraction? → use absolute‑uncertainty addition.
  2. Is it formed only by multiplication/division? → add percentage uncertainties.
  3. Does it involve a power or root (e.g. \(x^{n}\) or \(\sqrt{x}\))? → multiply the percentage uncertainty by \(|n|\).
  4. Is the function more complex (trigonometric, exponential, logarithmic, mixed)? → use the partial‑derivative method.

Practice questions (AS level)

  1. \(V{1}=5.00\ \text{V}\pm0.02\ \text{V},\; V{2}=3.00\ \text{V}\pm0.01\ \text{V}\). Find \(V=V{1}+V{2}\) and its uncertainty.
  2. \(F=12.0\ \text{N}\pm0.3\ \text{N},\; d=0.45\ \text{m}\pm0.01\ \text{m}\). Find the work \(W=Fd\) and its uncertainty.
  3. \(T=2.00\ \text{s}\pm0.02\ \text{s},\; A=0.10\ \text{m}\pm0.005\ \text{m}\). Find the maximum speed \(v_{\max}=2\pi A/T\) and its uncertainty.
  4. \(h=1.20\ \text{m}\pm0.02\ \text{m}\). Using \(v=\sqrt{2gh}\) (with \(g\) exact), determine \(v\) and its uncertainty.
  5. \(F=12.0\ \text{N}\pm0.3\ \text{N},\; d=0.45\ \text{m}\pm0.01\ \text{m},\; \theta=30^{\circ}\pm2^{\circ}\). Calculate \(W=Fd\cos\theta\) with the partial‑derivative method.


1.4 Scalars & vectors

  • Scalar: magnitude only (e.g., mass, temperature).
  • Vector: magnitude + direction (e.g., displacement, velocity, force).
  • Vector addition:

    • Tip‑to‑tail (graphical) method.
    • Component method: \(\mathbf{A}=A{x}\hat{i}+A{y}\hat{j}+A_{z}\hat{k}\).

  • Resultant magnitude: \(|\mathbf{A}|=\sqrt{A{x}^{2}+A{y}^{2}+A_{z}^{2}}\).
  • Dot product (useful for work): \(\mathbf{A}\!\cdot\!\mathbf{B}=AB\cos\theta\).


2 Kinematics

Key equations (uniform acceleration)

QuantityEquation
Displacement\(s = ut + \tfrac12 at^{2}\)
Final speed\(v = u + at\)
Speed–displacement\(v^{2}=u^{2}+2as\)
Average speed\(\bar v = \dfrac{\text{total distance}}{\text{total time}}\)

Typical uncertainties

  • Stopwatch: ±0.01 s (random) + reaction‑time systematic (≈±0.2 s).
  • Ruler/scale: ±0.1 cm (reading) + zero‑error systematic.

Example

A cart travels \(s = 1.20\ \text{m} \pm 0.02\ \text{m}\) in \(t = 0.50\ \text{s} \pm 0.01\ \text{s}\). Find the speed and its uncertainty.

\[

v = \frac{s}{t}= \frac{1.20}{0.50}=2.40\ \text{m s}^{-1}

\]

Percentage uncertainties:

\[

\frac{\Delta s}{s}\times100\% = \frac{0.02}{1.20}\times100\% = 1.7\%

\qquad

\frac{\Delta t}{t}\times100\% = \frac{0.01}{0.50}\times100\% = 2.0\%

\]

For division, add percentages:

\[

\frac{\Delta v}{v}\times100\% = 1.7\% + 2.0\% = 3.7\%

\]

\[

\Delta v = 3.7\%\times2.40 = 0.089\ \text{m s}^{-1}\approx0.09\ \text{m s}^{-1}

\]

\[

\boxed{v = 2.40\ \text{m s}^{-1} \pm 0.09\ \text{m s}^{-1}}

\]


3 Dynamics & forces

Core concepts

  • Newton’s 1st law – inertia.
  • Newton’s 2nd law – \(\mathbf{F}=m\mathbf{a}\) (vector form).
  • Newton’s 3rd law – action–reaction pairs.
  • Weight \(W = mg\) (g ≈ 9.81 m s⁻², taken exact for calculations).
  • Resultant force: vector sum of all forces acting on a body.

Equations for common situations

SituationEquation
Horizontal motion with friction\(F{\text{net}} = ma = F{\text{applied}} - \mu N\)
Vertical motion (free fall)\(v = u + gt,\; s = ut + \tfrac12gt^{2}\)
Circular motion (uniform)\(F_{c}=mv^{2}/r\)

Example – Friction

A block of mass \(m=0.500\ \text{kg}\pm0.005\ \text{kg}\) is pulled horizontally with a force \(F=3.00\ \text{N}\pm0.02\ \text{N}\). The coefficient of kinetic friction is \(\mu_k=0.20\) (no uncertainty). Find the acceleration and its uncertainty.

\[

N = mg = 0.500\times9.81 = 4.905\ \text{N}

\]

\[

F{\text{fr}} = \muk N = 0.20\times4.905 = 0.981\ \text{N}

\]

\[

F{\text{net}} = F - F{\text{fr}} = 3.00 - 0.981 = 2.019\ \text{N}

\]

\[

a = \frac{F_{\text{net}}}{m}= \frac{2.019}{0.500}=4.04\ \text{m s}^{-2}

\]

Uncertainties (multiplication/division → add percentages):

\[

\frac{\Delta F}{F}= \frac{0.02}{3.00}=0.67\%

\quad

\frac{\Delta m}{m}= \frac{0.005}{0.500}=1.0\%

\]

\[

\frac{\Delta a}{a}=0.67\%+1.0\% = 1.67\%

\quad\Rightarrow\quad

\Delta a = 1.67\%\times4.04 = 0.07\ \text{m s}^{-2}

\]

\[

\boxed{a = 4.04\ \text{m s}^{-2} \pm 0.07\ \text{m s}^{-2}}

\]


4 Work, energy & power

Key formulae

ConceptFormula
Work\(W = \mathbf{F}\!\cdot\!\mathbf{s}=Fs\cos\theta\)
Kinetic energy\(K = \tfrac12 mv^{2}\)
Gravitational potential energy\(U = mgh\)
Mechanical energy (conserved)\(E = K+U\)
Power\(P = \dfrac{W}{t}=Fv\)

Uncertainty handling

  • For work \(W = Fd\cos\theta\) use the partial‑derivative method (A‑Level) because three independent quantities appear.
  • For kinetic energy, treat it as a power: percentage uncertainty = 2 × percentage uncertainty in \(v\) plus the percentage in \(m\).

Example – Kinetic energy

A cart of mass \(m=0.250\ \text{kg}\pm0.002\ \text{kg}\) moves at \(v=2.00\ \text{m s}^{-1}\pm0.03\ \text{m s}^{-1}\).

\[

K = \tfrac12 mv^{2}=0.5\times0.250\times(2.00)^{2}=0.500\ \text{J}

\]

Percentage uncertainties:

\[

\frac{\Delta m}{m}=0.8\%

\qquad

\frac{\Delta v}{v}= \frac{0.03}{2.00}=1.5\%

\]

Since \(v^{2}\) appears, double the velocity percentage:

\[

\frac{\Delta K}{K}=0.8\%+2(1.5\%)=3.8\%

\]

\[

\Delta K = 3.8\%\times0.500 = 0.019\ \text{J}\approx0.02\ \text{J}

\]

\[

\boxed{K = 0.50\ \text{J} \pm 0.02\ \text{J}}

\]


5 Waves & superposition

Core topics (AS)

  • Wave description – amplitude, wavelength \(\lambda\), period \(T\), frequency \(f\) ( \(f=1/T\) ), speed \(v = f\lambda\).
  • Transverse vs. longitudinal waves.
  • Reflection, refraction, diffraction and interference (Young’s double‑slit).
  • Standing waves on strings and in air columns – nodes, antinodes, harmonic series.
  • Polarisation of transverse waves.

Key equations

QuantityFormula
Wave speed\(v = f\lambda\)
Period\(T = 1/f\)
Fundamental frequency (string, fixed‑fixed)\(f_{1}= \dfrac{v}{2L}\)
Fundamental frequency (open‑closed tube)\(f_{1}= \dfrac{v}{4L}\)
Interference condition (constructive)\(\Delta r = n\lambda\)
Interference condition (destructive)\(\Delta r = (n+\tfrac12)\lambda\)

Uncertainty example – Wave speed

Measured wavelength \(\lambda = 0.500\ \text{m}\pm0.005\ \text{m}\) and frequency \(f = 250\ \text{Hz}\pm2\ \text{Hz}\).

\[

v = f\lambda = 250\times0.500 = 125\ \text{m s}^{-1}

\]

Percentage uncertainties:

\[

\frac{\Delta \lambda}{\lambda}=1.0\%,\qquad

\frac{\Delta f}{f}= \frac{2}{250}=0.8\%

\]

Add percentages (multiplication):

\[

\frac{\Delta v}{v}=1.0\%+0.8\%=1.8\%

\]

\[

\Delta v = 1.8\%\times125 = 2.3\ \text{m s}^{-1}

\]

\[

\boxed{v = 125\ \text{m s}^{-1} \pm 2\ \text{m s}^{-1}}

\]


6 Electricity (basic circuits)

Fundamental concepts (AS)

  • Current \(I\) (A), potential difference \(V\) (V), resistance \(R\) (Ω).
  • Ohm’s law: \(V = IR\).
  • Power: \(P = VI = I^{2}R = V^{2}/R\).
  • Series and parallel combinations:

    • Series: \(R{\text{eq}} = \sum Ri\), \(I\) same, \(V\) divides.
    • Parallel: \(\dfrac{1}{R{\text{eq}}}= \sum\dfrac{1}{Ri}\), \(V\) same, \(I\) divides.

Typical uncertainties

  • Digital multimeter (voltage): ±0.5 % + ±1 digit.
  • Current measurement (ammeter): ±1 % + ±0.01 A.
  • Resistance (colour‑code or DMM): ±1 % + ±0.1 Ω.

Example – Series circuit

Two resistors: \(R{1}=100.0\ \Omega\pm0.5\ \Omega\), \(R{2}=220.0\ \Omega\pm1.0\ \Omega\). A supply voltage \(V=12.0\ \text{V}\pm0.1\ \text{V}\). Find the total current and its uncertainty.

\[

R{\text{eq}} = R{1}+R_{2}=320.0\ \Omega

\]

\[

\frac{\Delta R{\text{eq}}}{R{\text{eq}}}= \frac{0.5+1.0}{320}=0.47\%

\]

\[

I = \frac{V}{R_{\text{eq}}}= \frac{12.0}{320.0}=0.0375\ \text{A}

\]

Percentage uncertainties (division → add):

\[

\frac{\Delta I}{I}= \frac{\Delta V}{V}+ \frac{\Delta R{\text{eq}}}{R{\text{eq}}}

= \frac{0.1}{12.0}+0.0047 = 0.0083+0.0047 = 0.0130\;(1.3\%)

\]

\[

\Delta I = 1.3\%\times0.0375 = 0.00049\ \text{A}\approx0.0005\ \text{A}

\]

\[

\boxed{I = 0.0375\ \text{A} \pm 0.0005\ \text{A}}

\]


7 DC circuits (Kirchhoff, potential dividers)

Kirchhoff’s laws

  • Current law (KCL): The algebraic sum of currents entering a junction is zero.
  • Voltage law (KVL): The algebraic sum of potential differences around any closed loop is zero.

Potential divider

For two series resistors \(R{1}\) and \(R{2}\) across a supply \(V\), the voltage across \(R_{2}\) is

\[

V{2}=V\frac{R{2}}{R{1}+R{2}}.

\]

Uncertainty (division & multiplication) → add percentage uncertainties of \(V\), \(R{1}\) and \(R{2}\).

Example – Potential divider

Supply \(V=5.00\ \text{V}\pm0.02\ \text{V}\). Resistors: \(R{1}=1.00\ \text{k}\Omega\pm10\ \Omega\), \(R{2}=2.00\ \text{k}\Omega\pm20\ \Omega\).

\[

V_{2}=5.00\times\frac{2000}{1000+2000}=5.00\times\frac{2}{3}=3.33\ \text{V}

\]

Percentage uncertainties:

\[

\frac{\Delta V}{V}=0.4\%,\;

\frac{\Delta R{1}}{R{1}}=1.0\%,\;

\frac{\Delta R{2}}{R{2}}=1.0\%

\]

For the ratio \(R{2}/(R{1}+R{2})\) the relative uncertainty is the sum of the uncertainties of \(R{2}\) and \((R{1}+R{2})\):

\[

\frac{\Delta (R{1}+R{2})}{R{1}+R{2}} = \frac{10+20}{3000}=1.0\%

\]

Thus

\[

\frac{\Delta V{2}}{V{2}} = 0.4\% + 1.0\% + 1.0\% = 2.4\%

\]

\[

\Delta V_{2}=2.4\%\times3.33=0.08\ \text{V}

\]

\[

\boxed{V_{2}=3.33\ \text{V} \pm 0.08\ \text{V}}

\]


8 Particle physics (AS)

Key concepts

  • Structure of the atom – nucleus (protons, neutrons) + electrons.
  • Charge, mass, and spin of fundamental particles (e, p, n, α, β, γ).
  • Radioactive decay types: α‑decay, β‑decay, γ‑emission.
  • Half‑life \(t{1/2}\) and exponential decay: \(N = N{0}e^{-\lambda t}\) with \(\lambda = \ln2/t_{1/2}\).
  • Binding energy per nucleon, mass‑energy equivalence \(E=mc^{2}\).

Representative equations

QuantityFormula
Decay constant\(\lambda = \dfrac{\ln 2}{t_{1/2}}\)
Remaining nuclei\(N = N_{0}e^{-\lambda t}\)
ActivityA = \(\lambda N\)
Mass defect\(\Delta m = Zm{p} + Nm{n} - m_{\text{nuclide}}\)
Binding energy\(E_{b}= \Delta m\,c^{2}\)

Uncertainty example – Half‑life measurement

In a counting experiment the activity after 10 min is \(A = 2500\ \text{counts}\pm50\). The initial activity was \(A_{0}=5000\ \text{counts}\pm30\). Determine the half‑life assuming first‑order decay.

\[

\frac{A}{A_{0}} = e^{-\lambda t}\;\Rightarrow\;

\lambda = -\frac{1}{t}\ln