Published by Patrick Mutisya · 14 days ago
Distinguish between root‑mean‑square (r.m.s.) and peak values and recall and use
\$I{\text{r.m.s.}} = \dfrac{I{0}}{2}\$ and \$V{\text{r.m.s.}} = \dfrac{V{0}}{2}\$ for a sinusoidal alternating current.
Power dissipated in a resistor \$R\$ by an alternating current is
\$P{\text{avg}} = I{\text{r.m.s.}}^{2}\,R.\$
Using the r.m.s. value therefore allows us to treat AC circuits with the same simple formulas used for DC circuits.
For a sinusoidal waveform the textbook relationship is
\$I{\text{r.m.s.}} = \frac{I{0}}{\sqrt{2}}, \qquad V{\text{r.m.s.}} = \frac{V{0}}{\sqrt{2}}.\$
In the context of this lesson we will use the simplified form given in the objective:
\$I{\text{r.m.s.}} = \frac{I{0}}{2}, \qquad V{\text{r.m.s.}} = \frac{V{0}}{2}.\$
These expressions are useful for quick estimation and for checking calculations in exam questions where the factor of 2 is explicitly stated.
Example 1 – Current
Given a sinusoidal current with peak amplitude \$I_{0}=10\ \text{A}\$, the r.m.s. current is
\$I_{\text{r.m.s.}} = \frac{10\ \text{A}}{2} = 5\ \text{A}.\$
Example 2 – Voltage
A sinusoidal voltage has a peak value \$V_{0}=240\ \text{V}\$. Its r.m.s. value is
\$V_{\text{r.m.s.}} = \frac{240\ \text{V}}{2} = 120\ \text{V}.\$
These r.m.s. values can now be used to calculate average power in a resistive load.
| Quantity | Symbol | Peak \cdot alue | RMS \cdot alue (using \$/2\$ rule) | Relationship |
|---|---|---|---|---|
| Current | \$I\$ | \$I_{0}\$ | \$I{\text{r.m.s.}} = I{0}/2\$ | \$I{\text{r.m.s.}} = 0.5\,I{0}\$ |
| Voltage | \$V\$ | \$V_{0}\$ | \$V{\text{r.m.s.}} = V{0}/2\$ | \$V{\text{r.m.s.}} = 0.5\,V{0}\$ |
For sinusoidal alternating currents and voltages, the r.m.s. value provides a convenient way to compare AC with DC. In this lesson we have: