distinguish between root-mean-square (r.m.s.) and peak values and recall and use I r.m.s. = I0 / 2 and Vr.m.s. = V0 / 2 for a sinusoidal alternating current

Alternating Currents – Cambridge International AS & A Level Physics (9702)

Learning Objectives

  • Identify period, frequency and peak (maximum) values of sinusoidal waveforms.
  • Distinguish between peak, peak‑to‑peak and root‑mean‑square (r.m.s.) quantities.
  • Derive and use the exact sinusoidal relationships

    \[

    I{\rm rms}= \frac{I{0}}{\sqrt{2}},\qquad

    V{\rm rms}= \frac{V{0}}{\sqrt{2}}

    \]

    and the exam‑style approximations

    \[

    I{\rm rms}= \frac{I{0}}{2},\qquad

    V{\rm rms}= \frac{V{0}}{2}.

    \]

  • Calculate mean (average) power in resistive circuits and recognise the “½ \(P_{\max}\)” rule.
  • Analyse half‑wave and full‑wave rectifiers and understand how a smoothing capacitor reduces ripple.
  • Carry out a simple laboratory verification of the r.m.s.–peak relationship (AO3).

1. Prerequisite Concepts

  • Instantaneous vs. average quantities.
  • Sinusoidal function: \(x(t)=x_{0}\sin(\omega t+\phi)\) where \(\omega =2\pi f\).
  • DC power: \(P=IV=I^{2}R=V^{2}/R\).
  • Basic integration over one period \(T\) (used in the r.m.s. derivation).

2. Key Definitions

TermSymbolDefinition
Peak (maximum) value\(I{0},\;V{0}\)Greatest instantaneous magnitude of the alternating quantity.
Peak‑to‑peak value\(I{\text{p‑p}},\;V{\text{p‑p}}\)Difference between the positive and negative extremes; \(I{\text{p‑p}}=2I{0}\).
Root‑mean‑square (r.m.s.) value\(I{\rm rms},\;V{\rm rms}\)Equivalent DC value that would produce the same average power in a purely resistive load.
Period\(T\)Time for one complete cycle; \(T=1/f\).
Frequency\(f\)Number of cycles per second; measured in hertz (Hz).

3. Why RMS is Important

  • For a resistor \(R\), the average power delivered by an AC quantity is

    \[

    P{\rm avg}=I{\rm rms}^{2}R=\frac{V_{\rm rms}^{2}}{R}.

    \]

  • Using r.m.s. values lets us apply the familiar DC power formulas to AC circuits without performing an integration each time.
  • For a pure sinusoid the mean power is also

    \[

    P{\rm avg}= \frac{1}{2}P{\max},

    \]

    because the instantaneous power varies as \(\sin^{2}\) and its average over a period is \(1/2\).

4. Exact Derivation for a Sinusoid

Consider a sinusoidal current

\[

I(t)=I_{0}\sin(\omega t).

\]

The r.m.s. value is defined as

\[

I{\rm rms}= \sqrt{\frac{1}{T}\int{0}^{T} I^{2}(t)\,dt}.

\]

Substituting the sinusoid:

\[

\begin{aligned}

I{\rm rms}&= \sqrt{\frac{1}{T}\int{0}^{T} I_{0}^{2}\sin^{2}(\omega t)\,dt}\\

&= I{0}\sqrt{\frac{1}{T}\int{0}^{T}\sin^{2}(\omega t)\,dt}.

\end{aligned}

\]

Since \(\displaystyle\frac{1}{T}\int_{0}^{T}\sin^{2}(\omega t)\,dt = \frac12\),

\[

I{\rm rms}= \frac{I{0}}{\sqrt{2}}.

\]

Exactly the same steps give \(V{\rm rms}=V{0}/\sqrt{2}\) for a sinusoidal voltage.

5. The Exam‑Style “/2” Rule

  • Cambridge exam questions often give the shortcut

    \[

    I{\rm rms}= \frac{I{0}}{2},\qquad V{\rm rms}= \frac{V{0}}{2},

    \]

    where \(I{0}\) (or \(V{0}\)) is the peak‑to‑peak amplitude.

    Because \(I{0(\text{p‑p})}=2I{0(\text{peak})}\), the exact relation becomes

    \[

    I{\rm rms}= \frac{I{\text{p‑p}}}{2\sqrt{2}}\approx\frac{I_{\text{p‑p}}}{2.83}.

    \]

  • Use the “/2” form only when the question explicitly states it. Otherwise apply the exact \(\sqrt{2}\) factor.
  • Always check whether the given “peak” value is a true peak or a peak‑to‑peak value before converting.

6. RMS Factors for Common Waveforms

WaveformPeak value \(X{0}\)RMS factor \(k\) ( \(X{\rm rms}=kX_{0}\) )
Sinusoid (full‑wave)\(X_{0}\)\(\displaystyle\frac{1}{\sqrt{2}}\;(0.707)\)
Square wave (±\(X{0}\))\(X{0}\)1.0
Triangular wave (±\(X{0}\))\(X{0}\)\(\displaystyle\frac{1}{\sqrt{3}}\;(0.577)\)
Half‑wave rectified sine\(X_{0}\)\(\displaystyle\frac{1}{2}\;(0.500)\)
Full‑wave rectified sine\(X_{0}\)\(\displaystyle\frac{1}{\sqrt{2}}\;(0.707)\)

7. Converting Between Peak and RMS Values

  1. Identify the waveform type. (sinusoid, square, triangular, rectified, etc.)
  2. Choose the appropriate factor \(k\). Use the table above or the exact \(\frac{1}{\sqrt{2}}\) for a pure sinusoid.
  3. Apply the conversion

    \[

    X{\rm rms}=kX{0},\qquad X{0}= \frac{X{\rm rms}}{k}.

    \]

  4. Insert the r.m.s. value into any power, energy or heating calculation.

8. Rectification and Smoothing

8.1 Half‑Wave Rectifier

  • Only one half of the sinusoid is allowed to pass; the other half is blocked.
  • Peak current through the load: \(I_{0}\).

    RMS current: \(I{\rm rms}=I{0}/2\).

  • Average (DC) load current: \(\displaystyle I{\rm av}= \frac{I{0}}{\pi}\).

8.2 Full‑Wave Rectifier

  • Both halves of the sinusoid are made positive (bridge or centre‑tap).
  • RMS current: \(I{\rm rms}=I{0}/\sqrt{2}\) – the same as an un‑rectified sinusoid.
  • Average (DC) load current: \(\displaystyle I{\rm av}= \frac{2I{0}}{\pi}\).

8.3 Smoothing with a Capacitor

After rectification a capacitor is placed across the load to reduce the ripple voltage.

  • Ripple (peak‑to‑peak) voltage (approximation):

    \[

    V{\rm r} \approx \frac{I{\rm av}}{fC},

    \]

    where \(f\) is the ripple frequency (full‑wave: \(2f_{\text{source}}\)).

  • Increasing the capacitance \(C\) or the load resistance reduces the ripple.
  • For a well‑smoothed supply, the output voltage is close to the peak value minus the diode drop(s).

9. Worked Examples

Example 1 – Sinusoidal Current (Exact \(\sqrt{2}\) method)

Peak current \(I{0}=12\;\text{A}\). Find \(I{\rm rms}\) and the average power in a \(6\;\Omega\) resistor.

\[

I_{\rm rms}= \frac{12}{\sqrt{2}}=8.49\;\text{A}.

\]

\[

P{\rm avg}=I{\rm rms}^{2}R=(8.49)^{2}\times6\approx 432\;\text{W}.

\]

Example 2 – Using the “/2” Shortcut

Peak‑to‑peak current in a sinusoidal circuit is \(20\;\text{A}\). The question tells you to use the exam‑style rule.

\[

I_{0(\text{peak})}= \frac{20}{2}=10\;\text{A},\qquad

I{\rm rms}= \frac{I{0}}{2}=5\;\text{A}.

\]

Exact answer would be \(10/\sqrt{2}=7.07\;\text{A}\); the “/2” value is acceptable only because the question explicitly asks for it.

Example 3 – Full‑Wave Rectifier with Smoothing

A 240 V (r.m.s.) mains supply is fed into a full‑wave bridge. The diode drops are 0.7 V each. Find the approximate DC output voltage after a smoothing capacitor of \(1000\;\mu\text{F}\) supplying a 50 mA load.

  1. Peak mains voltage: \(V_{0}= \sqrt{2}\times240=339\;\text{V}\).
  2. After two diode drops: \(V_{\text{peak,load}} \approx 339-2\times0.7=337.6\;\text{V}\).
  3. Ripple frequency for full‑wave: \(2f = 100\;\text{Hz}\).
  4. Ripple voltage: \(\displaystyle V{r}\approx\frac{I{\rm av}}{f_{\rm ripple}C}

    =\frac{0.05}{100\times1000\times10^{-6}}=0.5\;\text{V}\).

  5. DC output ≈ \(337.6\;\text{V} - \frac{V_{r}}{2}\approx 337.3\;\text{V}\).

10. Laboratory Verification of the RMS–Peak Relationship (AO3)

  1. Set a function generator to produce a sinusoidal voltage of known peak‑to‑peak amplitude (e.g., 10 V p‑p).
  2. Measure the true‑RMS voltage with a calibrated true‑RMS multimeter.
  3. Calculate the expected r.m.s. value using both the exact \(\sqrt{2}\) formula and the “/2” shortcut.
  4. Compare the measured value with the calculations; the discrepancy should be < 1 % for a true‑RMS meter.
  5. Repeat with a square wave and a triangular wave to confirm the different RMS factors from the table.

11. Common Misconceptions & How to Avoid Them

  • Peak = RMS. Only true for a square wave; for a sinusoid \(I{\rm rms}=0.707\,I{0}\).
  • Confusing peak with peak‑to‑peak. Always read the wording; convert if necessary.
  • Applying the “/2” rule to non‑sinusoidal waveforms. Use the appropriate factor from the waveform table.
  • Using instantaneous values in power formulas. Power formulas \(P=I^{2}R\) or \(P=V^{2}/R\) require r.m.s. quantities, not instantaneous ones.

12. Quick Reference Summary – Exam Formulas

Key formulas you must memorise for Paper 21

  • Period–frequency: \(T=1/f\).
  • Sinusoidal form: \(x(t)=x_{0}\sin(\omega t)\), \(\omega =2\pi f\).
  • Mean power in a resistor: \(\displaystyle P{\rm avg}= \frac{1}{2}P{\max}= I{\rm rms}^{2}R = \frac{V{\rm rms}^{2}}{R}\).
  • Exact RMS–peak for a sinusoid: \(I{\rm rms}=I{0}/\sqrt{2},\; V{\rm rms}=V{0}/\sqrt{2}\).
  • Exam‑style shortcut (peak‑to‑peak given): \(I{\rm rms}=I{0}/2,\; V{\rm rms}=V{0}/2\).
  • Half‑wave rectifier RMS: \(I{\rm rms}=I{0}/2\); average load current \(I{\rm av}=I{0}/\pi\).
  • Full‑wave rectifier RMS: \(I{\rm rms}=I{0}/\sqrt{2}\); average load current \(I{\rm av}=2I{0}/\pi\).
  • Smoothing capacitor ripple (full‑wave): \(V{r}\approx I{\rm av}/(f_{\rm ripple}C)\).

13. Summary Table – Peak ↔ RMS ↔ Power

QuantityPeak \(X_{0}\)RMS factor \(k\)RMS valueMean power (resistor)
Current (sinusoid)\(I{0}\)\(1/\sqrt{2}\)\(I{\rm rms}=I{0}/\sqrt{2}\)\(P{\rm avg}=I_{\rm rms}^{2}R\)
Voltage (sinusoid)\(V{0}\)\(1/\sqrt{2}\)\(V{\rm rms}=V{0}/\sqrt{2}\)\(P{\rm avg}=V_{\rm rms}^{2}/R\)
Current (square)\(I{0}\)1\(I{\rm rms}=I_{0}\)Same as DC
Current (triangular)\(I{0}\)\(1/\sqrt{3}\)\(I{\rm rms}=I_{0}/\sqrt{3}\)Use RMS value
Current (half‑wave rectified)\(I{0}\)\(1/2\)\(I{\rm rms}=I_{0}/2\)Use RMS value
Current (full‑wave rectified)\(I{0}\)\(1/\sqrt{2}\)\(I{\rm rms}=I_{0}/\sqrt{2}\)Use RMS value

14. Suggested Diagram (Insert in your notes)

Sinusoidal waveform showing peak I₀ and RMS value I_rms = I₀/√2

Sinusoidal current: peak amplitude \(I{0}\) (red) and the r.m.s. value \(I{\rm rms}=I_{0}/\sqrt{2}\) (blue dashed line).