| Syllabus Section | Relevant Sub‑topics |
|---|---|
| AS 1‑11 (Atoms, nuclei and radiation) |
11.1 Atoms, nuclei and radiation – nuclide notation, isotopic notation, decay modes, conservation of $A$ and $Z$ (this note). 11.2 Radioactivity – later: γ‑radiation, positron emission, electron capture, fission, fusion, lepton‑number conservation. |
| A 23.1 (Nuclear physics – mass‑defect & binding energy) | Link‑on box below introduces the connection. |
| Other AS & A‑level units (kinematics, dynamics, waves, electricity, …) | Will be used later – see the course road‑map hand‑out. |
• Isotopic notation – $^{A}\text{X}$ (mass number only). Used when the atomic number is obvious from the element symbol.
• Nuclide notation – $^{A}_{Z}\text{X}$ (both $A$ and $Z$). Required for any question involving nuclear reactions or when several isotopes of the same element appear together.
Example: A carbon nucleus with 6 protons and 8 neutrons has $Z=6$, $A=14$:
$$^{14}_{6}\text{C}$$
Neutrons $N = 14 - 6 = 8$.
| Decay type | Particle emitted | Charge (subscript) | Δ$A$ | Δ$Z$ |
|---|---|---|---|---|
| α‑decay | $^{4}_{2}\text{He}$ (or $^{4}_{2}\alpha$) | +2 | –4 | –2 |
| β⁻‑decay | $^{0}_{-1}e$ (electron) | –1 | 0 | +1 |
| β⁺‑decay | $^{0}_{+1}e$ (positron) | +1 | 0 | –1 |
| Electron capture (EC) | $^{0}_{0}e$ (inner‑shell electron captured) | 0 | 0 | –1 |
| γ‑radiation | $^{0}_{0}\gamma$ | 0 | 0 | 0 |
γ‑radiation carries no charge and does not change $A$ or $Z$ – it will be treated in Unit 11.2.
Every reactant and product must be expressed in nuclide form. The equation must obey:
Example 1 – α‑decay of $^{238}_{92}\text{U}$
$$^{238}_{92}\text{U} \;\longrightarrow\; ^{4}_{2}\text{He}\;+\;^{234}_{90}\text{Th}$$
Example 2 – β⁻‑decay of $^{14}_{6}\text{C}$
$$^{14}_{6}\text{C} \;\longrightarrow\; ^{14}_{7}\text{N}\;+\;^{0}_{-1}e$$
Example 3 – β⁺‑decay of $^{22}_{11}\text{Na}$ (positron emission)
$$^{22}_{11}\text{Na} \;\longrightarrow\; ^{22}_{10}\text{Ne}\;+\;^{0}_{+1}e$$
(The superscript “+1” indicates the **positive** charge of the emitted positron.)
Example 4 – Electron capture of $^{55}_{26}\text{Fe}$
$$^{55}_{26}\text{Fe} \;\longrightarrow\; ^{55}_{25}\text{Mn}\;+\;^{0}_{0}e$$
Once you can write balanced nuclear equations, you can calculate the energy released using the mass‑defect concept:
Preview example: The binding energy of $^{4}_{2}\text{He}$ is obtained from the mass defect between two protons, two neutrons and the helium nucleus.
| Nuclide | Element (X) | $Z$ | $A$ | $N$ | Typical use / decay mode |
|---|---|---|---|---|---|
| $^{1}_{1}\text{H}$ | H | 1 | 1 | 0 | Protium – stable |
| $^{2}_{1}\text{H}$ | H | 1 | 2 | 1 | Deuterium – heavy water |
| $^{14}_{6}\text{C}$ | C | 6 | 14 | 8 | Radiocarbon dating (β⁻ decay) |
| $^{235}_{92}\text{U}$ | U | 92 | 235 | 143 | Fissile material (α/β/γ series) |
| $^{238}_{92}\text{U}$ | U | 92 | 238 | 146 | Natural uranium – fertile |
| Nuclide | Element (X) | $Z$ | $A$ | $N$ | Typical decay mode |
|---|---|---|---|---|---|
| $^{3}_{1}\text{H}$ | H | 1 | 3 | 2 | β⁻ |
| $^{60}_{27}\text{Co}$ | Co | 27 | 60 | 33 | β⁻ |
| $^{222}_{86}\text{Rn}$ | Rn | 86 | 222 | 136 | α |
| $^{131}_{53}\text{I}$ | I | 53 | 131 | 78 | β⁻ |
Create an account or Login to take a Quiz
Log in to suggest improvements to this note.
Your generous donation helps us continue providing free Cambridge IGCSE & A-Level resources, past papers, syllabus notes, revision questions, and high-quality online tutoring to students across Kenya.