Trigonometry: further identities, equations, solutions

Trigonometry – Further Identities, Equations & Solutions (Cambridge 9709 P3)

1. Exact Values (required for the syllabus)

Anglesin θcos θtan θ
0° (0)010
30° (π/6)½\(\sqrt3/2\)1/√3
45° (π/4)\(\sqrt2/2\)\(\sqrt2/2\)1
60° (π/3)\(\sqrt3/2\)½√3
90° (π/2)10

2. Key Trigonometric Identities

All identities hold for any angle θ (radians or degrees). They are the tools you will use to transform and solve equations.

CategoryIdentity
Reciprocal (six functions) $$\sin\theta=\frac1{\csc\theta},\quad\cos\theta=\frac1{\sec\theta},\quad\tan\theta=\frac1{\cot\theta}$$ $$\csc\theta=\frac1{\sin\theta},\quad\sec\theta=\frac1{\cos\theta},\quad\cot\theta=\frac1{\tan\theta}$$
Pythagorean $$\sin^{2}\theta+\cos^{2}\theta=1$$ $$1+\tan^{2}\theta=\sec^{2}\theta$$ $$1+\cot^{2}\theta=\csc^{2}\theta$$
Co‑function (π/2‑shift) $$\sin\!\Bigl(\tfrac{\pi}{2}-\theta\Bigr)=\cos\theta,\qquad \cos\!\Bigl(\tfrac{\pi}{2}-\theta\Bigr)=\sin\theta$$ $$\tan\!\Bigl(\tfrac{\pi}{2}-\theta\Bigr)=\cot\theta,\qquad \cot\!\Bigl(\tfrac{\pi}{2}-\theta\Bigr)=\tan\theta$$ $$\sec\!\Bigl(\tfrac{\pi}{2}-\theta\Bigr)=\csc\theta,\qquad \csc\!\Bigl(\tfrac{\pi}{2}-\theta\Bigr)=\sec\theta$$
Sum‑to‑Product $$\sin A\pm\sin B=2\sin\frac{A\pm B}{2}\cos\frac{A\mp B}{2}$$ $$\cos A+\cos B=2\cos\frac{A+B}{2}\cos\frac{A-B}{2}$$ $$\cos A-\cos B=-2\sin\frac{A+B}{2}\sin\frac{A-B}{2}$$
Product‑to‑Sum $$\sin A\sin B=\tfrac12\bigl[\cos(A-B)-\cos(A+B)\bigr]$$ $$\cos A\cos B=\tfrac12\bigl[\cos(A-B)+\cos(A+B)\bigr]$$ $$\sin A\cos B=\tfrac12\bigl[\sin(A+B)+\sin(A-B)\bigr]$$
Double‑angle $$\sin2\theta=2\sin\theta\cos\theta$$ $$\cos2\theta=\cos^{2}\theta-\sin^{2}\theta =2\cos^{2}\theta-1 =1-2\sin^{2}\theta$$ $$\tan2\theta=\frac{2\tan\theta}{1-\tan^{2}\theta}$$
Triple‑angle $$\sin3\theta=3\sin\theta-4\sin^{3}\theta$$ $$\cos3\theta=4\cos^{3}\theta-3\cos\theta$$ $$\tan3\theta=\frac{3\tan\theta-\tan^{3}\theta}{1-3\tan^{2}\theta}$$
R sin θ + b cos θ (or R cos θ + a sin θ) form $$R\sin\theta+b\cos\theta =\sqrt{R^{2}+b^{2}}\;\sin\!\bigl(\theta+\alpha\bigr),$$ where $$\alpha=\arctan\!\Bigl(\frac{b}{R}\Bigr)$$ (choose the quadrant of α so that $\cos\alpha=R/\sqrt{R^{2}+b^{2}}$ and $\sin\alpha=b/\sqrt{R^{2}+b^{2}}$).
The analogous result for $R\cos\theta+a\sin\theta$ is obtained by shifting the phase by $-\alpha$.

3. General Solutions of the Basic Trigonometric Equations

When the question asks for “all solutions”, give the principal solution(s) and then add the appropriate multiple of the function’s period. Remember:

  • Period of $\sin$, $\cos$, $\sec$, $\csc$ → $2\pi$ (or $360^\circ$)
  • Period of $\tan$, $\cot$ → $\pi$ (or $180^\circ$)
EquationGeneral solution
$\sin\theta = k$ (|k|≤1) $$\theta = \arcsin k + 2n\pi\quad\text{or}\quad \theta = \pi - \arcsin k + 2n\pi,\; n\in\mathbb Z$$
$\cos\theta = k$ (|k|≤1) $$\theta = \arccos k + 2n\pi\quad\text{or}\quad \theta = -\arccos k + 2n\pi,\; n\in\mathbb Z$$
$\tan\theta = k$ $$\theta = \arctan k + n\pi,\; n\in\mathbb Z$$
$\cot\theta = k$ $$\theta = \arccot k + n\pi,\; n\in\mathbb Z$$
$\sec\theta = k$ (|k|≥1) Reduce to $\cos\theta = 1/k$ and use the cosine formula above.
$\csc\theta = k$ (|k|≥1) Reduce to $\sin\theta = 1/k$ and use the sine formula above.

4. Systematic Procedure for Solving Trigonometric Equations

  1. Simplify. Use identities to rewrite the equation so that at most one trig function (or a simple product) appears.
  2. Factor / Apply sum‑to‑product. Convert sums to products when possible; factor common terms.
  3. Isolate the function. Set each factor equal to zero (or solve a simple equation such as $\sin\theta = k$).
  4. Find principal solutions. Work in the interval required by the question (commonly $0\le\theta<2\pi$ or $0^\circ\le\theta<360^\circ$).
  5. Write the general solution. Add $2\pi$ (or $360^\circ$) for $\sin,\cos,\sec,\csc$ and $\pi$ (or $180^\circ$) for $\tan,\cot$.
  6. Check for extraneous roots. Substitute each answer back into the original equation, especially after squaring, multiplying by a trig function, or using reciprocal identities.

5. Representative Worked Examples (full syllabus coverage)

Example 1 – Quadratic in $\cos\theta$ (uses double‑angle identity)

Solve $$2\cos^{2}\theta-3\cos\theta+1=0,\qquad 0\le\theta<2\pi.$$

  1. Let $x=\cos\theta$. Equation becomes $2x^{2}-3x+1=0$.
  2. Factor: $(2x-1)(x-1)=0\;\Longrightarrow\;x=\frac12\text{ or }x=1$.
  3. Recover $\theta$ using the cosine table:
    • $\cos\theta=\frac12\;\Rightarrow\;\theta=\frac{\pi}{3},\;\frac{5\pi}{3}$.
    • $\cos\theta=1\;\Rightarrow\;\theta=0$.
  4. Answer: $\displaystyle\theta=0,\;\frac{\pi}{3},\;\frac{5\pi}{3}$.

Example 2 – Sum‑to‑Product (sin θ + sin 3θ)

Solve $$\sin\theta+\sin3\theta=0,\qquad 0\le\theta<2\pi.$$

  1. Apply sum‑to‑product: $\sin\theta+\sin3\theta=2\sin2\theta\cos\theta$.
  2. Product zero ⇒ $\sin2\theta=0$ or $\cos\theta=0$.
  3. Solutions:
    • $\sin2\theta=0\;\Rightarrow\;2\theta=n\pi\;\Rightarrow\;\theta=\frac{n\pi}{2}$.
    • $\cos\theta=0\;\Rightarrow\;\theta=\frac{\pi}{2}+n\pi$.
    Within $0\le\theta<2\pi$: $\theta=0,\;\frac{\pi}{2},\;\pi,\;\frac{3\pi}{2}$.

Example 3 – $R\sin\theta+b\cos\theta$ form

Solve $$3\sin\theta+4\cos\theta=2,\qquad 0\le\theta<2\pi.$$

  1. Compute $R=\sqrt{3^{2}+4^{2}}=5$, $\displaystyle\alpha=\arctan\!\Bigl(\frac{4}{3}\Bigr)\approx0.9273\text{ rad}$ (53.13°).
    $$3\sin\theta+4\cos\theta=5\sin(\theta+\alpha).$$
  2. Equation becomes $5\sin(\theta+\alpha)=2\;\Longrightarrow\;\sin(\theta+\alpha)=\frac25.$
  3. Principal solutions for $\phi=\theta+\alpha$: $$\phi_{1}= \arcsin\frac25\approx0.4115,\qquad \phi_{2}= \pi-\arcsin\frac25\approx2.7301.$$
  4. Subtract $\alpha$:
    • $\theta_{1}=0.4115-0.9273\approx-0.5158\;\Rightarrow\;\theta_{1}=2\pi-0.5158\approx5.7674\text{ rad}.$
    • $\theta_{2}=2.7301-0.9273\approx1.8028\text{ rad}.$
  5. Answer (rad): $\theta\approx1.803,\;5.767$ (≈ 103.3° and 330.3°).

Example 4 – Equation involving $\sec\theta$ (reciprocal identity)

Solve $$\sec\theta-2\cos\theta=0,\qquad 0\le\theta<2\pi.$$

  1. Replace $\sec\theta$ by $1/\cos\theta$: $$\frac1{\cos\theta}-2\cos\theta=0\;\Longrightarrow\;1-2\cos^{2}\theta=0.$$
  2. Thus $\cos^{2}\theta=\tfrac12\;\Rightarrow\;\cos\theta=\pm\frac1{\sqrt2}.$
  3. Using the cosine table:
    • $\cos\theta=+\frac1{\sqrt2}\;\Rightarrow\;\theta=\frac{\pi}{4},\;\frac{7\pi}{4}$.
    • $\cos\theta=-\frac1{\sqrt2}\;\Rightarrow\;\theta=\frac{3\pi}{4},\;\frac{5\pi}{4}$.
  4. Answer: $\displaystyle\theta=\frac{\pi}{4},\;\frac{3\pi}{4},\;\frac{5\pi}{4},\;\frac{7\pi}{4}$.

Example 5 – Quadratic in $\cot\theta$ (using reciprocal of $\tan$)

Solve $$2\cot^{2}\theta-3\cot\theta-2=0,\qquad 0\le\theta<2\pi.$$

  1. Let $x=\cot\theta$. $2x^{2}-3x-2=0$.
  2. Factor: $(2x+1)(x-2)=0\;\Rightarrow\;x=-\tfrac12\text{ or }x=2$.
  3. Return to $\theta$:
    • $\cot\theta=2\;\Rightarrow\;\theta=\arccot2\approx0.4636\text{ rad}$ or $\theta=\pi+0.4636\approx3.6052\text{ rad}$.
    • $\cot\theta=-\tfrac12\;\Rightarrow\;\theta=\pi-\arccot\tfrac12\approx2.6780\text{ rad}$ or $\theta=2\pi-\arccot\tfrac12\approx5.8195\text{ rad}$.
  4. Answer (rad): $\theta\approx0.464,\;2.678,\;3.605,\;5.820$ (≈ 26.6°, 153.4°, 206.6°, 333.4°).

Example 6 – Solving a mixed‑function equation (product‑to‑sum)

Solve $$\sin2\theta\cos3\theta=0,\qquad 0\le\theta<2\pi.$$

  1. Product zero ⇒ $\sin2\theta=0$ or $\cos3\theta=0$.
  2. $\sin2\theta=0\;\Rightarrow\;2\theta=n\pi\;\Rightarrow\;\theta=\frac{n\pi}{2}$.
  3. $\cos3\theta=0\;\Rightarrow\;3\theta=\frac{\pi}{2}+n\pi\;\Rightarrow\;\theta=\frac{\pi}{6}+\frac{n\pi}{3}$.
  4. List values in $[0,2\pi)$:
    • From $\theta=\frac{n\pi}{2}$: $0,\;\frac{\pi}{2},\;\pi,\;\frac{3\pi}{2}$.
    • From $\theta=\frac{\pi}{6}+\frac{n\pi}{3}$: $\frac{\pi}{6},\;\frac{\pi}{2},\;\frac{5\pi}{6},\;\frac{7\pi}{6},\;\frac{3\pi}{2},\;\frac{11\pi}{6}$.
  5. Combine and remove duplicates → $\displaystyle\theta=0,\;\frac{\pi}{6},\;\frac{\pi}{2},\;\frac{5\pi}{6},\;\pi,\;\frac{7\pi}{6},\;\frac{3\pi}{2},\;\frac{11\pi}{6}$.

6. Quick Reference – Periods & Principal Ranges

  • sin θ, cos θ, sec θ, csc θ: period $2\pi$; principal range $[0,2\pi)$.
  • tan θ, cot θ: period $\pi$; principal range $(-\tfrac{\pi}{2},\tfrac{\pi}{2})$ for $\tan$ and $(0,\pi)$ for $\cot$.
  • When using inverse functions, always note the principal value and then add the appropriate multiple of the period.

7. Checklist Before Finalising Answers

  1. Have you reduced the equation to the simplest possible trig form?
  2. Did you consider the domain of the original equation (e.g., $\cos\thetaeq0$ when a denominator is present)?
  3. Are all solutions within the requested interval?
  4. Have you added the correct period for the general solution?
  5. Did you substitute each solution back into the original equation to confirm it is not extraneous?

Create an account or Login to take a Quiz

71 views
0 improvement suggestions

Log in to suggest improvements to this note.