Series (Syllabus 1.6) – Arithmetic & Geometric Progressions, Binomial Expansion
Syllabus Checklist (Cambridge AS & A‑Level Mathematics 9709, 2026‑27)
Define arithmetic progression (AP) and geometric progression (GP).
Write the $n^{\text{th}}$ term of an AP and a GP.
Derive and use the formula for the sum of the first $n$ terms of an AP and a GP (finite).
State and apply the special cases $d=0$, $r=1$, $a=0$.
State the convergence condition $|r|<1$ for an infinite GP and calculate its sum to infinity.
Use $\Sigma$‑notation to express series and to derive the sum formulae.
State the binomial theorem for a positive integer exponent, write the general term, and read coefficients from Pascal’s triangle.
1. Arithmetic Progression (AP)
1.1 Definition & $n^{\text{th}}$ term
Sequence in which the difference between consecutive terms is constant – the common difference $d$.
First term: $a$.
General term: $t_n = a + (n-1)d$ .
1.2 Sum of the first $n$ terms
Using $\Sigma$‑notation:
$$S_n = \sum_{k=1}^{n} t_k = \sum_{k=1}^{n}\bigl[a+(k-1)d\bigr]$$
Evaluating the arithmetic series (pairing the first and last terms) gives two equivalent closed‑form expressions:
$$S_n = \frac{n}{2}\bigl(2a+(n-1)d\bigr)\;=\;\frac{n}{2}\bigl(t_1+t_n\bigr)$$
1.3 Special cases
$d=0$ → All terms equal $a$; $S_n = na$.
$a=0$ → $ t_n = (n-1)d$ (the progression starts from zero).
$d<0$ → The AP decreases; the formulae remain valid.
1.4 Example
Find the sum of the first 15 terms of the AP $4,\;9,\;14,\dots$.
Identify $a=4$, $d=5$.
Find the 15‑th term: $t_{15}=a+(15-1)d=4+14\cdot5=74$.
Apply the sum formula:
$$S_{15}= \frac{15}{2}\bigl(4+74\bigr)=\frac{15}{2}\times78=585.$$
2. Geometric Progression (GP)
2.1 Definition & $n^{\text{th}}$ term
Sequence in which each term after the first is obtained by multiplying the preceding term by a constant – the common ratio $r$.
First term: $a$.
General term: $g_n = a\,r^{\,n-1}$ .
2.2 Sum of the first $n$ terms (finite GP)
In $\Sigma$‑notation:
$$G_n = \sum_{k=1}^{n} a\,r^{\,k-1}=a\sum_{k=0}^{n-1} r^{k}$$
Evaluating the geometric series (for $req1$) gives:
$$G_n = a\,\frac{1-r^{\,n}}{1-r}\qquad(req1)$$
2.3 Special cases
$r=1$ → All terms equal $a$; $G_n = na$.
$a=0$ → Every term is $0$; $G_n = 0$.
$r=-1$ → Terms alternate $a,-a,a,\dots$; use the same formula (note the sign of $r^{\,n}$).
2.4 Infinite GP – convergence
An infinite geometric series
$$\displaystyle\sum_{k=1}^{\infty} a\,r^{\,k-1}$$
converges **iff** $|r|<1$. When it converges, the sum to infinity is
$$G_{\infty}= \frac{a}{1-r}\qquad(|r|<1).$$
If $|r|\ge 1$ the series diverges (no finite sum).
2.5 Example (finite GP)
Find the sum of the first 6 terms of the GP $3,6,12,\dots$.
$a=3$, $r=2$.
Apply the finite‑sum formula:
$$G_6 = 3\,\frac{1-2^{6}}{1-2}=3\,\frac{1-64}{-1}=3\times63=189.$$
2.6 Example (infinite GP)
Evaluate $\displaystyle\sum_{n=1}^{\infty}\frac{2}{3^{\,n}}$.
Rewrite as $a r^{\,n-1}$ with $a=\frac{2}{3}$ and $r=\frac13$.
Since $|r|<1$, the series converges:
$$G_{\infty}= \frac{a}{1-r}= \frac{\frac{2}{3}}{1-\frac13}= \frac{\frac{2}{3}}{\frac23}=1.$$
3. Binomial Expansion
3.1 Binomial theorem (positive integer exponent)
For any non‑negative integer $n$:
$$ (x+y)^n = \sum_{k=0}^{n} \binom{n}{k}\,x^{\,n-k}y^{\,k} $$
where the binomial coefficient
$$\displaystyle\binom{n}{k}= \frac{n!}{k!\,(n-k)!},\qquad 0\le k\le n.$$
3.2 General term
The $(k+1)^{\text{th}}$ term (counting from $k=0$) is
$$T_{k+1}= \binom{n}{k}\,x^{\,n-k}y^{\,k}.$$
3.3 Pascal’s triangle
Coefficients $\binom{n}{k}$ are read directly from Pascal’s triangle. The first six rows are shown below.
n Coefficients $\displaystyle\binom{n}{k}$
0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
3.4 Example – expansion up to a specific term
Expand $(2x-3)^4$ up to the term in $x^2$.
Identify $x\to2x$, $y\to-3$, $n=4$.
Write the first three terms ($k=0,1,2$):
\[
\begin{aligned}
(2x-3)^4 &= \binom{4}{0}(2x)^4(-3)^0
+ \binom{4}{1}(2x)^3(-3)^1
+ \binom{4}{2}(2x)^2(-3)^2 + \dots\\[4pt]
&= 1\cdot16x^4
-4\cdot8x^3\cdot3
+6\cdot4x^2\cdot9 + \dots\\[4pt]
&= 16x^4 -96x^3 +216x^2 +\dots
\end{aligned}
\]
4. Practice Questions
Find the $20^{\text{th}}$ term of the AP $7,\,12,\,17,\dots$.
Calculate the sum of the first 10 terms of the GP $5,\,15,\,45,\dots$.
Determine whether the infinite series $\displaystyle\sum_{n=1}^{\infty}\frac{2}{3^{\,n}}$ converges, and if so, find its sum.
Expand $(x+2)^5$ and state the coefficient of $x^3$.
Given that the sum of the first $n$ terms of an AP is $S_n = 3n^2 + 5n$, find the first term $a$ and the common difference $d$.
5. Summary of Key Formulae
Series type
General term
Sum of $n$ terms
Special notes
Arithmetic progression (AP)
$t_n = a + (n-1)d$
$S_n = \displaystyle\frac{n}{2}\bigl(2a+(n-1)d\bigr)=\displaystyle\frac{n}{2}(t_1+t_n)$
Linear growth; $d$ may be positive, negative or zero.
Geometric progression (GP)
$g_n = a\,r^{\,n-1}$
$G_n = a\,\displaystyle\frac{1-r^{\,n}}{1-r}\;(req1)$
$G_{\infty}= \displaystyle\frac{a}{1-r}\quad(|r|<1)$
Infinite sum exists only for $|r|<1$. $r=1$ gives $G_n=na$.
Binomial expansion
$T_{k+1}= \displaystyle\binom{n}{k}x^{\,n-k}y^{\,k}$
$(x+y)^n = \displaystyle\sum_{k=0}^{n}\binom{n}{k}x^{\,n-k}y^{\,k}$
Coefficients read from Pascal’s triangle; $n$ must be a non‑negative integer.
Suggested diagram: a number line showing an arithmetic progression (equal spacing $d$) alongside a geometric progression (spacing multiplied by $r$).