Integration: techniques, volumes of revolution, differential equations

Cambridge IGCSE/AS & A‑Level Mathematics 9709 – Consolidated Lecture Notes (2026‑27)


1. Pure Mathematics 1 (Paper 1) – Core Foundations

  • Algebraic basics
    • Quadratic equations – completing the square, discriminant, factorisation, formula \(x=\dfrac{-b\pm\sqrt{b^{2}-4ac}}{2a}\).
    • Coordinate geometry – distance, midpoint, slope, equation of a straight line (point‑slope, intercept, two‑point forms).
    • Circle geometry – standard form \((x-h)^{2}+(y-k)^{2}=r^{2}\); centre \((h,k)\), radius \(r\).
  • Trigonometry & circular measure
    • Conversion: \(\displaystyle 180^{\circ}= \pi\;\text{rad}\), \(1\;\text{rad}= \dfrac{180}{\pi}^{\circ}\).
    • Fundamental identities: \(\sin^{2}\theta+\cos^{2}\theta=1\), \(\tan\theta=\dfrac{\sin\theta}{\cos\theta}\), \(\sin(\theta\pm\phi),\;\cos(\theta\pm\phi),\;\tan(\theta\pm\phi)\).
    • Values of \(\sin,\cos,\tan\) for multiples of \(30^{\circ},45^{\circ},60^{\circ}\).
  • Series & progressions
    • Arithmetic progression (AP): \(a_n=a_1+(n-1)d\), sum \(S_n=\dfrac{n}{2}(a_1+a_n)\).
    • Geometric progression (GP): \(a_n=a_1 r^{\,n-1}\), sum \(S_n=a_1\dfrac{1-r^{n}}{1-r}\) \((req1)\).
  • Basic differentiation & integration
    • Derivative of a power: \(\dfrac{d}{dx}x^{n}=nx^{n-1}\).
    • Derivative of \(\sin x,\cos x,\tan x\); basic integration \(\int x^{n}\,dx=\dfrac{x^{n+1}}{n+1}+C\) ( \(neq-1\) ).

2. Pure Mathematics 2 (Paper 2) – Extending Algebra & Calculus

  • Algebraic manipulation
    • Polynomial division (long & synthetic) and the Remainder & Factor Theorems.
    • Solving simultaneous equations – substitution & elimination.
  • Logarithmic & exponential functions
    LawExpression
    Product\(\log_{a}(xy)=\log_{a}x+\log_{a}y\)
    Quotient\(\log_{a}\!\left(\dfrac{x}{y}\right)=\log_{a}x-\log_{a}y\)
    Power\(\log_{a}x^{k}=k\log_{a}x\)
    Change of base\(\log_{a}x=\dfrac{\log_{b}x}{\log_{b}a}\)
    Exponential\(a^{\log_{a}x}=x\)

    Typical exam problem – solve \(2^{x}=5\):
    \(\displaystyle x=\frac{\log 5}{\log 2}\) (common log) or \(x=\frac{\ln5}{\ln2}\).

  • Advanced trigonometry
    • Double‑angle: \(\sin2\theta=2\sin\theta\cos\theta,\;\cos2\theta=\cos^{2}\theta-\sin^{2}\theta\).
    • Half‑angle: \(\sin^{2}\theta=\tfrac12(1-\cos2\theta),\;\cos^{2}\theta=\tfrac12(1+\cos2\theta)\).
    • R‑formula: \(a\sin\theta+b\cos\theta=R\sin(\theta+\alpha)\), where \(R=\sqrt{a^{2}+b^{2}}\).
  • Differentiation – product, quotient & chain rules
    • Product: \(\dfrac{d}{dx}[u\,v]=u'v+uv'\).
    • Quotient: \(\dfrac{d}{dx}\!\left(\dfrac{u}{v}\right)=\dfrac{u'v-uv'}{v^{2}}\).
    • Chain: \(\dfrac{d}{dx}f(g(x))=f'(g(x))\,g'(x)\).

    Example – differentiate \(y=\dfrac{x^{2}\,e^{3x}}{1+\sin x}\).
    Apply product & quotient rules → final answer \(y'=\dfrac{(2x\,e^{3x}+3x^{2}e^{3x})(1+\sin x)-x^{2}e^{3x}\cos x}{(1+\sin x)^{2}}\).

  • Numerical integration – Trapezium (Trapezoidal) Rule

    For data points \((x_{0},y_{0}),\dots,(x_{n},y_{n})\) equally spaced by \(h\):

    \[ \int_{x_{0}}^{x_{n}}f(x)\,dx\;\approx\;\frac{h}{2}\Bigl(y_{0}+2\sum_{i=1}^{n-1}y_{i}+y_{n}\Bigr). \]

    Typical exam task – estimate \(\displaystyle\int_{0}^{2}x^{3}\,dx\) using \(h=1\). Result: \(\frac{1}{2}\bigl(0+2(1)+8\bigr)=5\) (exact value \(=4\)).

  • Root‑finding (numerical solution of equations)
    • Sign‑change method (graphical/interval bisection).
    • Simple iteration – rewrite \(f(x)=0\) as \(x=g(x)\) and iterate \(x_{n+1}=g(x_{n})\) until successive values agree to required accuracy.

3. Pure Mathematics 3 (Paper 3) – Integration, Vectors, Complex Numbers & Differential Equations

3.1 Integration – Full Syllabus Coverage

3.1.1 Substitution (u‑substitution)

Use when the integrand contains a function \(g(x)\) and its derivative \(g'(x)\).

  1. Set \(u=g(x)\), so \(du=g'(x)\,dx\).
  2. Rewrite the integral in terms of \(u\) and \(du\).
  3. Integrate with respect to \(u\).
  4. Back‑substitute \(u=g(x)\).

Example \(\displaystyle\int e^{3x+2}\,dx\):
\(u=3x+2,\;du=3dx\Rightarrow dx=\frac{du}{3}\) → \(\frac13\int e^{u}du=\frac13e^{u}+C=\frac13e^{3x+2}+C\).

3.1.2 Integration by Parts

Based on the product rule:

\[ \int u\,dv = uv-\int v\,du. \]

Choose \(u\) (to differentiate) and \(dv\) (to integrate) using the LIATE hierarchy (Log → Inv‑trig → Algebraic → Trig → Exp).

Example \(\displaystyle\int x\,e^{2x}\,dx\):
\(u=x,\;du=dx,\;dv=e^{2x}dx,\;v=\tfrac12e^{2x}\) → \(\tfrac12xe^{2x}-\tfrac14e^{2x}+C\).

3.1.3 Partial Fractions (Full Syllabus Forms)

Applicable to proper rational functions \(\displaystyle\int\frac{P(x)}{Q(x)}dx\) where \(\deg P<\deg Q\).

Factor of \(Q(x)\)Decomposition
Simple linear \((x-a)\) \(\displaystyle\frac{A}{x-a}\)
Repeated linear \((x-a)^{k}\) \(\displaystyle\frac{A_{1}}{x-a}+\frac{A_{2}}{(x-a)^{2}}+\dots+\frac{A_{k}}{(x-a)^{k}}\)
Irreducible quadratic \((x^{2}+bx+c)\) \(\displaystyle\frac{Bx+C}{x^{2}+bx+c}\)
Repeated quadratic \((x^{2}+bx+c)^{k}\) \(\displaystyle\frac{B_{1}x+C_{1}}{x^{2}+bx+c}+\dots+\frac{B_{k}x+C_{k}}{(x^{2}+bx+c)^{k}}\)

Worked example (repeated linear & quadratic):

\[ \int\frac{3x^{2}+5x+2}{(x-1)^{2}(x^{2}+2x+5)}dx. \]

Decompose:

\[ \frac{3x^{2}+5x+2}{(x-1)^{2}(x^{2}+2x+5)}= \frac{A}{x-1}+\frac{B}{(x-1)^{2}}+\frac{Cx+D}{x^{2}+2x+5}. \]

Multiply through, equate coefficients (or substitute convenient \(x\) values) to obtain \(A=1,\;B=2,\;C=-1,\;D=0\). Hence

\[ \int\Bigl(\frac{1}{x-1}+\frac{2}{(x-1)^{2}}-\frac{x}{x^{2}+2x+5}\Bigr)dx = \ln|x-1|- \frac{2}{x-1}-\tfrac12\ln(x^{2}+2x+5)+C. \]
3.1.4 Trigonometric Integrals

Integrals of \(\displaystyle\int\sin^{m}x\cos^{n}x\,dx\).

  • If \(m\) is odd, keep one \(\sin x\), convert the rest using \(\sin^{2}x=1-\cos^{2}x\) and set \(u=\cos x\).
  • If \(n\) is odd, keep one \(\cos x\), convert the rest using \(\cos^{2}x=1-\sin^{2}x\) and set \(u=\sin x\).
  • If both are even, use double‑angle identities \(\sin^{2}x=\frac12(1-\cos2x)\), \(\cos^{2}x=\frac12(1+\cos2x)\).

Example \(\displaystyle\int\sin^{3}x\cos^{2}x\,dx\) (odd \(\sin\)):

\[ \sin^{3}x=(1-\cos^{2}x)\sin x\;\Rightarrow\; \int(1-\cos^{2}x)\cos^{2}x\sin x\,dx \overset{u=\cos x}{=} -\int(u^{2}-u^{4})du = \frac{\cos^{5}x}{5}-\frac{\cos^{3}x}{3}+C. \]
3.1.5 Trigonometric Substitution

Used for radicals of the form \(\sqrt{a^{2}\pm x^{2}}\) or \(\sqrt{x^{2}-a^{2}}\).

RadicalSubstitutionResulting identity
\(\sqrt{a^{2}-x^{2}}\) \(x=a\sin\theta\) \(\sqrt{a^{2}-x^{2}}=a\cos\theta\)
\(\sqrt{a^{2}+x^{2}}\) \(x=a\tan\theta\) \(\sqrt{a^{2}+x^{2}}=a\sec\theta\)
\(\sqrt{x^{2}-a^{2}}\) \(x=a\sec\theta\) \(\sqrt{x^{2}-a^{2}}=a\tan\theta\)

Example \(\displaystyle\int\frac{dx}{\sqrt{9-x^{2}}}\):

\[ x=3\sin\theta,\;dx=3\cos\theta d\theta,\;\sqrt{9-x^{2}}=3\cos\theta \;\Longrightarrow\; \int d\theta=\theta+C =\arcsin\!\left(\frac{x}{3}\right)+C. \]
3.1.6 Summary of Integration Techniques
TechniqueTypical syllabus formKey step
Substitution\(\displaystyle\int f(g(x))g'(x)\,dx\)Set \(u=g(x)\)
Integration by Parts\(\displaystyle\int u\,dv\)Choose \(u, dv\) via LIATE
Partial Fractions\(\displaystyle\int\frac{P(x)}{Q(x)}dx\) (proper)Decompose \(Q(x)\) into linear/quadratic factors
Trigonometric Integrals\(\displaystyle\int\sin^{m}x\cos^{n}x\,dx\)Use parity, double‑angle, and substitution
Trig Substitution\(\displaystyle\int\frac{dx}{\sqrt{a^{2}\pm x^{2}}}\) etc.Replace \(x\) by \(a\sin\theta, a\tan\theta\) or \(a\sec\theta\)

3.2 Volumes of Revolution

3.2.1 Disk Method (no hole)

Region bounded by \(y=f(x)\) and the x‑axis on \([a,b]\), rotated about the x‑axis:

\[ V=\pi\int_{a}^{b}[f(x)]^{2}\,dx. \]

If rotating about the y‑axis, express the curve as \(x=g(y)\) and integrate w.r.t. \(y\):

\[ V=\pi\int_{c}^{d}[g(y)]^{2}\,dy. \]
3.2.2 Washer Method (region with a hole)

Outer curve \(y=f(x)\), inner curve \(y=g(x)\) (\(f\ge g\)), rotation about the x‑axis:

\[ V=\pi\int_{a}^{b}\bigl([f(x)]^{2}-[g(x)]^{2}\bigr)\,dx. \]

For rotation about the y‑axis, use \(x=h(y)\) (outer) and \(x=k(y)\) (inner):

\[ V=\pi\int_{c}^{d}\bigl([h(y)]^{2}-[k(y)]^{2}\bigr)\,dy. \]
3.2.3 Shell Method (cylindrical shells)

Best when the axis of rotation is parallel to the integration direction.

  • Rotation about the y‑axis (vertical) using vertical strips: \[ V=2\pi\int_{a}^{b}x\,\bigl[\text{height}(x)\bigr]dx. \]
  • Rotation about the x‑axis (horizontal) using horizontal strips: \[ V=2\pi\int_{c}^{d}y\,\bigl[\text{height}(y)\bigr]dy. \]
3.2.4 Worked Example – Washer vs. Shell

Region bounded by \(y=x^{2}\) and \(y=2x\) rotated about the y‑axis.

Washer method (express \(x\) as functions of \(y\)):

  • \(y=x^{2}\Rightarrow x=\sqrt{y}\), \(y=2x\Rightarrow x=\dfrac{y}{2}\).
  • Outer radius \(R(y)=\dfrac{y}{2}\), inner radius \(r(y)=\sqrt{y}\).
  • Intersection at \(x=0\) and \(x=2\) → \(y\) from 0 to 4.
\[ V=\pi\int_{0}^{4}\!\Bigl[\Bigl(\frac{y}{2}\Bigr)^{2}-(\sqrt{y})^{2}\Bigr]dy =\pi\int_{0}^{4}\!\Bigl(\frac{y^{2}}{4}-y\Bigr)dy =\frac{8\pi}{3}. \]

Shell method (vertical strips): radius \(x\), height \(2x-x^{2}\), \(x\in[0,2]\).

\[ V=2\pi\int_{0}^{2}x\,(2x-x^{2})dx =2\pi\int_{0}^{2}(2x^{2}-x^{3})dx =2\pi\Bigl[\frac{2x^{3}}{3}-\frac{x^{4}}{4}\Bigr]_{0}^{2} =\frac{8\pi}{3}. \]
3.2.5 Method‑Selection Table (about the y‑axis)
MethodWhen most convenientTypical formula
Disk Region expressed as \(x=g(y)\) with no hole. \(V=\pi\displaystyle\int_{c}^{d}[g(y)]^{2}dy\)
Washer Region between two curves \(x=h(y)\) (outer) and \(x=k(y)\) (inner). \(V=\pi\displaystyle\int_{c}^{d}\bigl([h(y)]^{2}-[k(y)]^{2}\bigr)dy\)
Shell Vertical strips are simpler; axis of rotation is vertical. \(V=2\pi\displaystyle\int_{a}^{b}x\,\bigl[\text{height}(x)\bigr]dx\)

3.3 Differential Equations – Separable First‑Order (Syllabus 3.8)

Definition

A first‑order ODE is separable if it can be written as

\[ \frac{dy}{dx}=g(x)\,h(y). \]
Solution Procedure
  1. Separate variables: \(\displaystyle\frac{1}{h(y)}\,dy = g(x)\,dx.\)
  2. Integrate both sides: \[ \int\frac{1}{h(y)}\,dy = \int g(x)\,dx + C. \]
  3. Solve for \(y\) (explicitly if possible) and apply any given initial condition.

Example \(\displaystyle\frac{dy}{dx}=x\,y^{2}\), with \(y(0)=1\).

\[ \frac{1}{y^{2}}\,dy = x\,dx \;\Longrightarrow\; -\frac{1}{y}= \frac{x^{2}}{2}+C. \] Using \(y(0)=1\) gives \(C=-1\). Hence \[ -\frac{1}{y}= \frac{x^{2}}{2}-1 \;\Longrightarrow\; y=\frac{1}{1-\frac{x^{2}}{2}}. \]

3.4 Vectors (Paper 3 – Syllabus 3.9)

Notation & Basic Operations
  • Vector in 2‑D: \(\mathbf{a}= \langle a_{1},a_{2}\rangle\). In 3‑D: \(\mathbf{a}= \langle a_{1},a_{2},a_{3}\rangle\).
  • Equality: \(\mathbf{a}=\mathbf{b}\) iff corresponding components are equal.
  • Addition/subtraction: \(\mathbf{a}\pm\mathbf{b}= \langle a_{1}\pm b_{1},\;a_{2}\pm b_{2},\;a_{3}\pm b_{3}\rangle\).
  • Scalar multiplication: \(k\mathbf{a}= \langle k a_{1},k a_{2},k a_{3}\rangle\).
Scalar (Dot) Product
\[ \mathbf{a}\cdot\mathbf{b}=a_{1}b_{1}+a_{2}b_{2}+a_{3}b_{3} =|\mathbf{a}|\,|\mathbf{b}|\cos\theta, \] where \(\theta\) is the angle between the vectors.

Useful results:

  • \(\mathbf{a}\cdot\mathbf{a}=|\mathbf{a}|^{2}\).
  • If \(\mathbf{a}\cdot\mathbf{b}=0\) and neither vector is zero, the vectors are perpendicular.
Vector (Cross) Product – 3‑D only
\[ \mathbf{a}\times\mathbf{b}= \begin{vmatrix} \mathbf{i}&\mathbf{j}&\mathbf{k}\\[2pt] a_{1}&a_{2}&a_{3}\\[2pt] b_{1}&b_{2}&b_{3} \end{vmatrix} = \langle a_{2}b_{3}-a_{3}b_{2},\; a_{3}b_{1}-a_{1}b_{3},\; a_{1}b_{2}-a_{2}b_{1}\rangle. \] \[ |\mathbf{a}\times\mathbf{b}|=|\mathbf{a}|\,|\mathbf{b}|\sin\theta, \] the magnitude equals the area of the parallelogram spanned by \(\mathbf{a},\mathbf{b}\).
Equation of a Line (2‑D & 3‑D)
  • Parametric form (2‑D): \(\displaystyle x=x_{0}+rt,\;y=y_{0}+st\) where \(\langle r,s\rangle\) is a direction vector.
  • Symmetric form (3‑D): \(\displaystyle \frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c}\) for direction vector \(\langle a,b,c\rangle\).
Example – Distance from a point to a line (3‑D)

Line through \(P(1,2,3)\) with direction \(\mathbf{d}= \langle 2,-1,2\rangle\). Find distance from \(Q(4,0,5)\) to the line.

\[ \mathbf{PQ}= \langle 3,-2,2\rangle,\qquad \text{distance}= \frac{|\mathbf{PQ}\times\mathbf{d}|}{|\mathbf{d}|} = \frac{\sqrt{( -2\cdot2-2\cdot(-1))^{2}+(2\cdot2-3\cdot2)^{2}+(3\cdot(-1)-(-2)\cdot2)^{2}}}{\sqrt{2^{2}+(-1)^{2}+2^{2}}} = \frac{\sqrt{36}}{3}=2. \]

3.5 Complex Numbers (Paper 3 – Syllabus 3.10)

Standard Form
\[ z=a+bi,\qquad i^{2}=-1. \]
Modulus & Argument
\[ |z|=\sqrt{a^{2}+b^{2}},\qquad \arg(z)=\theta=\tan^{-1}\!\left(\frac{b}{a}\right) \;(\text{adjusted to the correct quadrant}). \]
Polar (Trigonometric) Form
\[ z=|z|\bigl(\cos\theta+i\sin\theta\bigr)=|z|\,\operatorname{cis}\theta. \]
Operations
  • Addition/subtraction – use standard form.
  • Multiplication: \(z_{1}z_{2}=|z_{1}||z_{2}|\operatorname{cis}(\theta_{1}+\theta_{2})\).
  • Division: \(\displaystyle\frac{z_{1}}{z_{2}}=\frac{|z_{1}|}{|z_{2}|}\operatorname{cis}(\theta_{1}-\theta_{2})\).
  • Power (De Moivre): \(\displaystyle z^{n}=|z|^{\,n}\operatorname{cis}(n\theta)\).
Example – Solving a quadratic with complex roots
\[ x^{2}+4x+13=0. \] \[ x=\frac{-4\pm\sqrt{16-52}}{2}= -2\pm3i. \] In polar form: \[ -2+3i = \sqrt{13}\,\operatorname{cis}\!\bigl(\tan^{-1}(-\tfrac{3}{2})+\pi\bigr). \]

Appendix – Quick‑Reference Tables

Trig Identities (essential for Paper 2 & 3)

IdentityForm
Reciprocal\(\csc\theta=1/\sin\theta,\;\sec\theta=1/\cos\theta,\;\cot\theta=1/\tan\theta\)
Pythagorean\(\sin^{2}\theta+\cos^{2}\theta=1\), \(1+\tan^{2}\theta=\sec^{2}\theta\), \(1+\cot^{2}\theta=\csc^{2}\theta\)
Double‑angle\(\sin2\theta=2\sin\theta\cos\theta\), \(\cos2\theta=\cos^{2}\theta-\sin^{2}\theta\)
Half‑angle\(\sin^{2}\theta=\tfrac12(1-\cos2\theta)\), \(\cos^{2}\theta=\tfrac12(1+\cos2\theta)\)
R‑formula\(a\sin\theta+b\cos\theta=R\sin(\theta+\alpha)\), \(R=\sqrt{a^{2}+b^{2}}\)

Logarithm & Exponential Laws

LawExpression
Product\(\log_{a}(xy)=\log_{a}x+\log_{a}y\)
Quotient\(\log_{a}\!\left(\dfrac{x}{y}\right)=\log_{a}x-\log_{a}y\)
Power\(\log_{a}x^{k}=k\log_{a}x\)
Change of base\(\log_{a}x=\dfrac{\log_{b}x}{\log_{b}a}\)
Exponential inverse\(a^{\log_{a}x}=x\)

Series Formulas (Paper 1 & 2)

\[ \sum_{k=1}^{n}k = \frac{n(n+1)}{2},\qquad \sum_{k=1}^{n}k^{2}= \frac{n(n+1)(2n+1)}{6},\qquad \sum_{k=1}^{n}k^{3}= \left[\frac{n(n+1)}{2}\right]^{2}. \]

Vector Identities

  • \(\mathbf{a}\cdot(\mathbf{b}+\mathbf{c})=\mathbf{a}\cdot\mathbf{b}+\mathbf{a}\cdot\mathbf{c}\).
  • \(\mathbf{a}\times(\mathbf{b}+\mathbf{c})=\mathbf{a}\times\mathbf{b}+\mathbf{a}\times\mathbf{c}\).
  • \(\mathbf{a}\times\mathbf{b}= -\mathbf{b}\times\mathbf{a}\) (anti‑commutative).
  • \((\mathbf{a}\times\mathbf{b})\cdot\mathbf{c}= \mathbf{a}\cdot(\mathbf{b}\times\mathbf{

Create an account or Login to take a Quiz

51 views
0 improvement suggestions

Log in to suggest improvements to this note.