Integration: Techniques, Definite Integrals, Areas & Volumes
1. Why Study Integration?
- It is the inverse operation of differentiation – the antiderivative of a function.
- It gives accumulated quantities (distance, work, charge, etc.).
- It provides signed areas under a curve and geometric areas/volumes between curves.
2. Basic Antiderivatives (Syllabus 1.8.1)
For a function $f(x)$, an antiderivative $F(x)$ satisfies $F'(x)=f(x)$. The most frequently used forms are:
| Integral | Result |
| \displaystyle\int k\,dx | $kx+C$ ($k$ constant) |
| \displaystyle\int x^{n}\,dx | $\displaystyle\frac{x^{\,n+1}}{n+1}+C\quad(neq-1)$ |
| \displaystyle\int e^{ax}\,dx | $\displaystyle\frac{1}{a}e^{ax}+C$ |
| \displaystyle\int \sin(ax)\,dx | $-\displaystyle\frac{1}{a}\cos(ax)+C$ |
| \displaystyle\int \cos(ax)\,dx | $\displaystyle\frac{1}{a}\sin(ax)+C$ |
Constant of Integration – Why It Matters
The symbol $C$ represents an arbitrary constant. It is essential when a differential equation is solved, because the constant is fixed by an initial condition.
Example
Given $\displaystyle\frac{dy}{dx}=2x$ and $y(0)=3$, find $y$.
- Integrate: $y=\int2x\,dx = x^{2}+C$.
- Use the condition $y(0)=3$: $3=0^{2}+C\;\Rightarrow\;C=3$.
- Hence $y=x^{2}+3$.
3. Integration Techniques (Syllabus 1.8.2)
| Technique |
When to Use |
Key Steps |
| Substitution (u‑substitution) |
Integrand contains a function and its derivative, i.e. $f(g(x))g'(x)$. |
- Set $u=g(x)$.
- Compute $du=g'(x)\,dx$ and rewrite $dx$.
- Replace the whole integral by $\int f(u)\,du$.
- Integrate, then substitute $u=g(x)$ back.
|
| Integration by Parts |
Product of two functions where one simplifies on differentiation (e.g. $u\,v'$). |
- Choose $u$ (so that $du$ is simpler) and $dv$.
- Find $du$ and $v=\int dv$.
- Apply $\displaystyle\int u\,dv = uv-\int v\,du$.
|
| Partial Fractions – Linear Factors (Paper 1) |
Rational function whose denominator splits into distinct linear factors. |
- Express $\displaystyle\frac{P(x)}{(x-a_1)(x-a_2)\dots}=
\frac{A_1}{x-a_1}+ \frac{A_2}{x-a_2}+ \dots$.
- Determine the constants $A_i$ (cover‑up method or equating coefficients).
- Integrate each simple term $\displaystyle\int\frac{A_i}{x-a_i}\,dx
=A_i\ln|x-a_i|+C$.
Note: Decomposition involving irreducible quadratics belongs to Paper 3 (Pure Mathematics 2) and is not required for Paper 1.
|
| Trigonometric Integrals |
Integrands containing powers of $\sin x$, $\cos x$, or products thereof. |
- Use identities:
$\sin^{2}x=\frac{1-\cos2x}{2}$,
$\cos^{2}x=\frac{1+\cos2x}{2}$,
$\sin x\cos x=\frac{1}{2}\sin2x$.
- Reduce the powers until a standard integral is reached.
|
| Trigonometric Substitution (Paper 2) |
Integrals containing $\sqrt{a^{2}-x^{2}}$, $\sqrt{a^{2}+x^{2}}$, or $\sqrt{x^{2}-a^{2}}$. |
- Choose the appropriate substitution:
- $x=a\sin\theta$ for $\sqrt{a^{2}-x^{2}}$
- $x=a\tan\theta$ for $\sqrt{a^{2}+x^{2}}$
- $x=a\sec\theta$ for $\sqrt{x^{2}-a^{2}}$
- Rewrite $dx$ and the radical in terms of $\theta$.
- Integrate the resulting trigonometric integral.
- Return to $x$ using a right‑triangle diagram.
Example (Paper 2 style)
$\displaystyle\int\frac{dx}{\sqrt{a^{2}-x^{2}}}$
Set $x=a\sin\theta$, $dx=a\cos\theta\,d\theta$, $\sqrt{a^{2}-x^{2}}=a\cos\theta$.
The integral becomes $\displaystyle\int\frac{a\cos\theta\,d\theta}{a\cos\theta}= \int d\theta =\theta+C$.
Since $x=a\sin\theta$, $\theta=\arcsin\!\frac{x}{a}$, so the antiderivative is $\displaystyle\arcsin\!\frac{x}{a}+C$.
|
| Integration of Rational Functions with Irreducible Quadratics (Paper 3 – note) |
When the denominator contains a quadratic that cannot be factored over the reals. |
These require completing the square and a combination of the previous techniques (partial fractions with linear numerator, plus a trig‑substitution or arctangent form). It is beyond Paper 1, but students should be aware that the syllabus later expects:
- $\displaystyle\int\frac{dx}{x^{2}+a^{2}} = \frac{1}{a}\arctan\frac{x}{a}+C$
- $\displaystyle\int\frac{x\,dx}{x^{2}+a^{2}} = \frac{1}{2}\ln|x^{2}+a^{2}|+C$
These formulas are listed for reference only.
|
4. Improper Integrals (Syllabus 1.8.3)
An integral is **improper** if
- the integrand becomes unbounded at an endpoint, or
- the interval of integration is infinite.
It is defined as a limit. The Cambridge syllabus expects the following elementary cases.
4.1 Convergent Example (integrand singular at a finite endpoint)
Evaluate $\displaystyle\int_{0}^{1}x^{-1/2}\,dx$.
- Write as a limit: $\displaystyle\lim_{t\to0^{+}}\int_{t}^{1}x^{-1/2}\,dx$.
- Antiderivative: $2x^{1/2}$.
- Take the limit: $2(1)-2(0)=2$ (convergent).
4.2 Divergent Example (logarithmic singularity)
Evaluate $\displaystyle\int_{0}^{1}\frac{dx}{x}$.
- Write as $\displaystyle\lim_{t\to0^{+}}\int_{t}^{1}\frac{dx}{x}$.
- Antiderivative: $\ln|x|$.
- Limit: $\displaystyle\lim_{t\to0^{+}}\bigl[\ln1-\ln t\bigr]=-\infty$ → divergent.
4.3 Improper Integral on an Infinite Interval
Evaluate $\displaystyle\int_{1}^{\infty}\frac{dx}{x^{2}}$.
- Write as $\displaystyle\lim_{b\to\infty}\int_{1}^{b}x^{-2}\,dx$.
- Antiderivative: $-x^{-1}$.
- Limit: $\displaystyle\lim_{b\to\infty}\bigl[-b^{-1}+1\bigr]=1$ (convergent).
5. Definite Integrals (Syllabus 1.8.4)
5.1 Fundamental Theorem of Calculus (FTC)
If $F$ is an antiderivative of $f$ on $[a,b]$, then
\[
\int_{a}^{b}f(x)\,dx = F(b)-F(a).
\]
5.2 Useful Properties
| $\displaystyle\int_{a}^{a} f(x)\,dx = 0$ |
| $\displaystyle\int_{a}^{b} f(x)\,dx = -\int_{b}^{a} f(x)\,dx$ |
| $\displaystyle\int_{a}^{b} [f(x)\pm g(x)]\,dx = \int_{a}^{b} f(x)\,dx \pm \int_{a}^{b} g(x)\,dx$ |
| $\displaystyle\int_{a}^{b} k\,f(x)\,dx = k\int_{a}^{b} f(x)\,dx\qquad(k\text{ constant})$ |
6. Areas and Volumes (Syllabus 1.8.5)
6.1 Area under a curve (with respect to the $x$‑axis)
If $f(x)\ge0$ on $[a,b]$, the geometric area is
\[
\text{Area}= \int_{a}^{b} f(x)\,dx .
\]
If $f$ changes sign, split the interval at the zeros and add the absolute values of the resulting signed areas.
6.2 Area between two curves $y=f(x)$ and $y=g(x)$
Assume $f(x)\ge g(x)$ on $[a,b]$.
\[
\text{Area}= \int_{a}^{b}\bigl[f(x)-g(x)\bigr]\,dx .
\]
6.3 Area expressed with $y$ as the variable
When the region is more naturally described by $x=h(y)$ and $x=k(y)$ (with $h(y)\ge k(y)$ on $[c,d]$), use
\[
\text{Area}= \int_{c}^{d}\bigl[h(y)-k(y)\bigr]\,dy .
\]
6.4 Volumes of Revolution (Paper 1 – basic cases)
- Disk/Washer method (rotation about the $x$‑axis)
\[
V = \pi\int_{a}^{b}\bigl[\,R(x)^{2}-r(x)^{2}\,\bigr]\,dx,
\]
where $R$ is the outer radius and $r$ the inner radius (if a hole is present).
- Shell method (rotation about the $y$‑axis)
\[
V = 2\pi\int_{c}^{d} \bigl[\,\text{radius}\times\text{height}\,\bigr]\,dy.
\]
For rotation about the $y$‑axis, the radius is $x$ (or $|x|$) and the height is $f(x)-g(x)$ expressed as a function of $x$.
Example – Volume by the Disk Method
Find the volume generated by rotating the region bounded by $y=x^{2}$ and $y=2x$ about the $x$‑axis.
- Intersection points: $x^{2}=2x\;\Rightarrow\;x=0,\,2$.
- For $0\le x\le2$, the upper curve is $y=2x$, the lower is $y=x^{2}$.
- Outer radius $R(x)=2x$, inner radius $r(x)=x^{2}$.
- Volume:
\[
V=\pi\int_{0}^{2}\!\bigl[(2x)^{2}-(x^{2})^{2}\bigr]dx
=\pi\int_{0}^{2}\!(4x^{2}-x^{4})dx.
\]
- Integrate: $\displaystyle\Bigl[\frac{4}{3}x^{3}-\frac{x^{5}}{5}\Bigr]_{0}^{2}
=\frac{32}{3}-\frac{32}{5}= \frac{96-64}{15}= \frac{32}{15}$.
- Hence $V=\displaystyle\frac{32\pi}{15}\,$ cubic units.
7. Worked Examples (All Paper 1 Techniques)
Example 1 – Substitution
Evaluate $\displaystyle\int (3x^{2}+2)\,e^{x^{3}+2x}\,dx$.
- Let $u=x^{3}+2x\;\Rightarrow\;du=(3x^{2}+2)\,dx$.
- Integral becomes $\displaystyle\int e^{u}\,du = e^{u}+C$.
- Result: $e^{x^{3}+2x}+C$.
Example 2 – Integration by Parts
Find $\displaystyle\int x\cos x\,dx$.
- $u=x\;\Rightarrow\;du=dx$.
- $dv=\cos x\,dx\;\Rightarrow\;v=\sin x$.
- Apply the formula: $\displaystyle\int x\cos x\,dx = x\sin x-\int\sin x\,dx$.
- Integrate the remaining term: $\int\sin x\,dx = -\cos x$.
- Result: $x\sin x+\cos x+C$.
Example 3 – Partial Fractions (Linear Factors)
Compute $\displaystyle\int\frac{2x+5}{(x+1)(x+2)}\,dx$.
- Decompose: $\displaystyle\frac{2x+5}{(x+1)(x+2)} = \frac{A}{x+1}+\frac{B}{x+2}$.
- Multiply through: $2x+5=A(x+2)+B(x+1)$.
- Set $x=-1$: $2(-1)+5=A(1)\Rightarrow A=3$.
- Set $x=-2$: $2(-2)+5=B(-1)\Rightarrow B=-1$.
- Integral: $\displaystyle\int\!\Bigl(\frac{3}{x+1}-\frac{1}{x+2}\Bigr)dx
=3\ln|x+1|-\ln|x+2|+C$.
Example 4 – Trigonometric Integral
Evaluate $\displaystyle\int \sin^{3}x\cos x\,dx$.
- Write $\sin^{3}x=(1-\cos^{2}x)\sin x$.
- Set $u=\cos x\;\Rightarrow\;du=-\sin x\,dx$.
- Integral becomes $-\displaystyle\int(1-u^{2})\,du
=-\bigl(u-\tfrac{u^{3}}{3}\bigr)+C$.
- Back‑substitute: $-\cos x+\frac{\cos^{3}x}{3}+C$.
Example 5 – Area Between Two Curves
Find the area bounded by $y=x^{2}$ and $y=2x$.
- Intersection: $x^{2}=2x\Rightarrow x=0,\,2$.
- On $[0,2]$, $2x\ge x^{2}$.
- Area $= \displaystyle\int_{0}^{2}(2x-x^{2})\,dx$.
- Antiderivative: $x^{2}-\dfrac{x^{3}}{3}$.
- Evaluate: $\bigl[4-\tfrac{8}{3}\bigr]-0 = \dfrac{4}{3}$ square units.
Example 6 – Improper Integral (Convergent on an Infinite Interval)
Evaluate $\displaystyle\int_{1}^{\infty}\frac{dx}{x^{2}}$.
- Write as $\displaystyle\lim_{b\to\infty}\int_{1}^{b}x^{-2}\,dx$.
- Antiderivative: $-x^{-1}$.
- Limit: $\displaystyle\lim_{b\to\infty}\bigl[-b^{-1}+1\bigr]=1$ (convergent).
8. Summary Checklist (Paper 1)
- Identify the most suitable technique before starting an integration.
- For substitution, always rewrite $dx$ in terms of $du$.
- For integration by parts, pick $u$ so that $du$ is simpler than $u$.
- Partial‑fraction decomposition is limited to distinct linear factors in Paper 1.
- Remember the constant of integration $C$ – it is required when a particular solution is sought.
- Recognise improper integrals (unbounded integrand or infinite limits) and evaluate them as limits.
- Apply the Fundamental Theorem of Calculus after finding an antiderivative for any definite integral.
- When computing areas:
- Split the interval at any zeros of the function.
- Subtract the lower curve from the upper curve on each sub‑interval.
- If the region is described by $x$ as a function of $y$, integrate with respect to $y$.
- For volumes of revolution, decide whether the disk/washer or shell method gives the simpler integral.