1 Limit definition of the derivative
Derivative as a limit of a chord
\[
f'(x_0)=\lim_{h\to0}\frac{f(x_0+h)-f(x_0)}{h}
\]
This limit, when it exists, gives the instantaneous rate of change of \(y\) with respect to \(x\) at the point \((x_0,f(x_0))\).
2 Notation
- \(y=f(x)\) – function notation.
- \(f'(x)\) – prime notation.
- \(\displaystyle\frac{dy}{dx}\) – Leibniz notation (useful for related‑rates).
- \(dx,\;dy\) – infinitesimal changes (note: \(dx^2\) never appears in the Cambridge syllabus).
3 Fundamental differentiation rules
| Rule | Mathematical form | Result |
| Constant | \(\displaystyle\frac{d}{dx}[c]=0\) | Derivative of a constant is zero. |
| Power | \(\displaystyle\frac{d}{dx}[x^{n}]=n\,x^{\,n-1}\) | Valid for any real \(n\) (including fractional and negative). |
| Constant multiple | \(\displaystyle\frac{d}{dx}[c\,f(x)]=c\,f'(x)\) | Factor the constant out. |
| Sum / difference | \(\displaystyle\frac{d}{dx}[f\pm g]=f'\pm g'\) | Differentiate each term separately. |
| Product | \(\displaystyle\frac{d}{dx}[f\,g]=f'\,g+f\,g'\) | Differentiate one factor at a time. |
| Quotient | \(\displaystyle\frac{d}{dx}\!\left[\frac{f}{g}\right]=\frac{f'\,g-f\,g'}{g^{2}}\) | Denominator squared. |
| Chain | \(\displaystyle\frac{d}{dx}\,f(g(x))=f'\big(g(x)\big)\,g'(x)\) | Derivative of outer function evaluated at inner × derivative of inner. |
| Implicit differentiation | If \(F(x,y)=0\) then \(\displaystyle\frac{dy}{dx}=-\frac{F_{x}}{F_{y}}\) | Treat \(y\) as a function of \(x\) and differentiate. |
4 Derivatives of the core elementary functions (Cambridge list)
| Function | Derivative |
| \(e^{x}\) | \(e^{x}\) |
| \(a^{x}\;(a>0,\;aeq1)\) | \(a^{x}\ln a\) |
| \(\ln x\;(x>0)\) | \(\dfrac{1}{x}\) |
| \(\log_{a}x\;(a>0,\;aeq1)\) | \(\dfrac{1}{x\ln a}\) |
| \(\sin x\) | \(\cos x\) |
| \(\cos x\) | \(-\sin x\) |
| \(\tan x\) | \(\sec^{2}x\) |
| \(\csc x\) | \(-\csc x\cot x\) |
| \(\sec x\) | \(\sec x\tan x\) |
| \(\cot x\) | \(-\csc^{2}x\) |
| \(\sin^{-1}x\;( |x|\le1 )\) | \(\dfrac{1}{\sqrt{1-x^{2}}}\) |
| \(\cos^{-1}x\;( |x|\le1 )\) | \(-\dfrac{1}{\sqrt{1-x^{2}}}\) |
| \(\tan^{-1}x\) | \(\dfrac{1}{1+x^{2}}\) |
5 Stationary points and classification
5.1 Definition
A stationary point occurs where the first derivative vanishes:
\[
f'(x)=0.
\]
5.2 Finding stationary points
- Differentiate \(f(x)\) to obtain \(f'(x)\).
- Solve \(f'(x)=0\) for the candidate \(x\)-values.
- Substitute each candidate into \(f(x)\) to get the coordinates \((x,f(x))\).
5.3 Classification – second‑derivative test (Cambridge 1.7.1)
- \(f''(x_0)>0\) → local minimum.
- \(f''(x_0)<0\) → local maximum.
- \(f''(x_0)=0\) → inconclusive – use the first‑derivative sign‑change test or higher‑order derivatives.
5.4 First‑derivative sign‑change test
Examine the sign of \(f'(x)\) just to the left and right of a candidate \(x_0\):
- \(-\) → \(+\) → local minimum.
- \(+\) → \(-\) → local maximum.
- No sign change → point of inflection (may be stationary).
5.5 Example
Find and classify the stationary points of \(f(x)=x^{3}-3x^{2}+2\).
- \(f'(x)=3x^{2}-6x=3x(x-2)\) → \(x=0,\;2\).
- Points: \((0,2)\) and \((2,-2)\).
- \(f''(x)=6x-6\).
\(f''(0)=-6<0\) → \((0,2)\) is a local maximum.
\(f''(2)=6>0\) → \((2,-2)\) is a local minimum.
6 Points of inflection
A point of inflection occurs where the concavity changes, i.e. where \(f''(x)\) changes sign.
6.1 Procedure
- Find \(f''(x)\).
- Solve \(f''(x)=0\) for possible inflection points.
- Check the sign of \(f''(x)\) on each side of the candidates.
7 Tangents and normals
7.1 Equation of the tangent
At \((x_0,f(x_0))\) the gradient is \(m=f'(x_0)\). The tangent line is
\[
y-f(x_0)=f'(x_0)\,(x-x_0).
\]
7.2 Equation of the normal
The normal is perpendicular to the tangent; its gradient is \(-1/f'(x_0)\) (provided \(f'(x_0)eq0\)).
\[
y-f(x_0)=-\frac{1}{f'(x_0)}\,(x-x_0).
\]
7.3 Worked example
For \(y=x^{3}-3x^{2}+2\) at \(x=1\):
- \(f'(1)=3(1)^{2}-6(1)=-3\).
- Point: \((1,0)\).
- Tangent: \(y=-3(x-1)\;\Rightarrow\;y=-3x+3\).
- Normal: \(y=\frac13(x-1)\;\Rightarrow\;y=\frac13x-\frac13\).
8 Related‑rates problems
8.1 General method (Cambridge 1.7.3)
- Identify all variables and write the geometric/algebraic relation linking them.
- Differentiate the relation with respect to time \(t\) (use the chain rule where required).
- Substitute the given numerical values (including known rates) and solve for the required unknown rate.
8.2 Example 1 – Expanding circle
Radius grows at \(\displaystyle\frac{dr}{dt}=0.5\;\text{cm s}^{-1}\). Find \(\displaystyle\frac{dA}{dt}\) when \(r=10\;\text{cm}\).
- Area: \(A=\pi r^{2}\).
- \(\displaystyle\frac{dA}{dt}=2\pi r\,\frac{dr}{dt}\).
- \(\displaystyle\frac{dA}{dt}=2\pi(10)(0.5)=10\pi\;\text{cm}^{2}\text{s}^{-1}\).
8.3 Example 2 – Sliding ladder
A 5 m ladder leans against a wall. The foot slides away at \(\displaystyle\frac{dx}{dt}=1.2\;\text{m s}^{-1}\). Find \(\displaystyle\frac{dy}{dt}\) when the foot is 3 m from the wall.
- Relation: \(x^{2}+y^{2}=5^{2}\).
- Differentiate: \(2x\frac{dx}{dt}+2y\frac{dy}{dt}=0\) → \(\displaystyle\frac{dy}{dt}=-\frac{x}{y}\frac{dx}{dt}\).
- When \(x=3\), \(y=\sqrt{5^{2}-3^{2}}=4\).
\(\displaystyle\frac{dy}{dt}=-\frac{3}{4}(1.2)=-0.9\;\text{m s}^{-1}\). The top is descending.
9 Basic integration (reverse of differentiation)
9.1 Indefinite integrals – standard forms
| Integrand | Integral + C |
| \(k\) (constant) | \(kx + C\) |
| \(x^{n}\;(neq-1)\) | \(\dfrac{x^{n+1}}{n+1}+C\) |
| \(\dfrac{1}{x}\) | \(\ln|x|+C\) |
| \(e^{x}\) | \(e^{x}+C\) |
| \(a^{x}\) | \(\dfrac{a^{x}}{\ln a}+C\) |
| \(\sin x\) | \(-\cos x+ C\) |
| \(\cos x\) | \(\sin x+ C\) |
| \(\sec^{2}x\) | \(\tan x+ C\) |
| \(\csc^{2}x\) | \(-\cot x+ C\) |
| \(\dfrac{1}{1+x^{2}}\) | \(\tan^{-1}x+ C\) |
9.2 Definite integrals – area under a curve
For a continuous function \(f(x)\) on \([a,b]\):
\[
\int_{a}^{b} f(x)\,dx = F(b)-F(a),\qquad F'(x)=f(x).
\]
9.3 Volumes of revolution (disc/washer method)
Rotating \(y=f(x)\) about the \(x\)-axis between \(x=a\) and \(x=b\):
\[
V=\pi\int_{a}^{b} \bigl[f(x)\bigr]^{2}\,dx.
\]
10 Quadratics (Pure 1)
10.1 Standard forms
- General: \(ax^{2}+bx+c=0\) (\(aeq0\)).
- Completed square: \(a\bigl(x+\tfrac{b}{2a}\bigr)^{2}+k=0\).
10.2 Discriminant
\[
\Delta=b^{2}-4ac\quad\begin{cases}
\Delta>0 &\Rightarrow\; \text{two distinct real roots}\\
\Delta=0 &\Rightarrow\; \text{one repeated real root}\\
\Delta<0 &\Rightarrow\; \text{no real roots (complex conjugates)}.
\end{cases}
\]
10.3 Solving simultaneous linear–quadratic systems
Typical method: substitute the linear expression into the quadratic, solve the resulting quadratic, then back‑substitute.
10.4 Example
Solve \(\begin{cases}y=2x+1\\x^{2}+y^{2}=25\end{cases}\).
- Substitute \(y=2x+1\) into the circle: \(x^{2}+(2x+1)^{2}=25\).
- Expand: \(x^{2}+4x^{2}+4x+1=25\) → \(5x^{2}+4x-24=0\).
- Quadratic formula: \(x=\dfrac{-4\pm\sqrt{4^{2}+480}}{10}=\dfrac{-4\pm22}{10}\).
- Solutions: \(x=1.8,\;y=4.6\) and \(x=-2.6,\;y=-4.2\).
11 Functions, inverses & transformations
- Domain and range – determine by algebraic restrictions (denominators, even roots, logarithms).
- Composite functions: \((f\circ g)(x)=f\bigl(g(x)\bigr)\).
- Inverse function exists iff \(f\) is one‑to‑one; find by swapping \(x\) and \(y\) and solving for \(y\).
- Transformations: \(y=a\,f(bx-c)+d\) – stretch/compress, shift, reflect.
12 Coordinate geometry (Pure 1)
12.1 Straight line
- Slope: \(m=\dfrac{y_{2}-y_{1}}{x_{2}-x_{1}}\).
- Point‑slope form: \(y-y_{1}=m(x-x_{1})\).
- General form: \(Ax+By+C=0\).
- Parallel lines: equal slopes; perpendicular lines: \(m_{1}m_{2}=-1\).
12.2 Distance & midpoint
\[
\text{Distance }AB=\sqrt{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}},\qquad
M\Bigl(\frac{x_{1}+x_{2}}{2},\frac{y_{1}+y_{2}}{2}\Bigr).
\]
12.3 Circle
Standard form: \((x-h)^{2}+(y-k)^{2}=r^{2}\) (centre \((h,k)\), radius \(r\)).
- Tangent at \((x_{0},y_{0})\): \((x_{0}-h)(x-h)+(y_{0}-k)(y-k)=r^{2}\) or \( (x_{0}-h)(x-h)+(y_{0}-k)(y-k)=r^{2}\) simplified to \( (x_{0}-h)(x-h)+(y_{0}-k)(y-k)=r^{2}\).
- Alternative: gradient of radius \(\displaystyle m_{r}=\frac{y_{0}-k}{x_{0}-h}\); gradient of tangent \(m_{t}=-1/m_{r}\).
13 Circular measure (Pure 1)
- Radians: \(2\pi\) rad = \(360^{\circ}\); \(1\text{ rad}= \dfrac{180}{\pi}^{\circ}\).
- Arc length: \(s=r\theta\) (θ in radians).
- Sector area: \(A=\dfrac{1}{2}r^{2}\theta\).
14 Trigonometry (Pure 1 & 2)
14.1 Basic ratios & identities
\[
\sin^{2}\theta+\cos^{2}\theta=1,\qquad
1+\tan^{2}\theta=\sec^{2}\theta,\qquad
1+\cot^{2}\theta=\csc^{2}\theta.
\]
14.2 Exact values
For angles \(0^{\circ},30^{\circ},45^{\circ},60^{\circ},90^{\circ}\) (or the radian equivalents) the sine, cosine and tangent values are memorised.
14.3 Sum, difference & double‑angle formulae
\[
\sin(\alpha\pm\beta)=\sin\alpha\cos\beta\pm\cos\alpha\sin\beta,\qquad
\cos(\alpha\pm\beta)=\cos\alpha\cos\beta\mp\sin\alpha\sin\beta,
\]
\[
\sin2\theta=2\sin\theta\cos\theta,\qquad
\cos2\theta=\cos^{2}\theta-\sin^{2}\theta.
\]
14.4 Solving trig equations
General steps:
- Rewrite using identities to obtain a single trig function.
- Isolate the function and use the principal value(s) in the required interval.
- Include all solutions by adding the appropriate period (\(2\pi\) for sine/cosine, \(\pi\) for tangent).
14.5 Example
Solve \(\;2\sin^{2}\theta-3\sin\theta+1=0\) for \(0\le\theta\le2\pi\).
- Let \(u=\sin\theta\): \(2u^{2}-3u+1=0\) → \((2u-1)(u-1)=0\).
- Solutions: \(u=\tfrac12\) or \(u=1\).
- \(\sin\theta=\tfrac12\) → \(\theta=\frac{\pi}{6},\;\frac{5\pi}{6}\).
\(\sin\theta=1\) → \(\theta=\frac{\pi}{2}\).
15 Series (Pure 1)
15.1 Arithmetic progression (AP)
\[
a_{n}=a_{1}+(n-1)d,\qquad
S_{n}=\frac{n}{2}\bigl(a_{1}+a_{n}\bigr)=\frac{n}{2}\bigl[2a_{1}+(n-1)d\bigr].
\]
15.2 Geometric progression (GP)
\[
a_{n}=a_{1}r^{\,n-1},\qquad
S_{n}=a_{1}\frac{1-r^{n}}{1-r}\;(req1),\qquad
S_{\infty}= \frac{a_{1}}{1-r}\;( |r|<1).
\]
15.3 Example – Sum of a GP
Find the sum of the first 5 terms of \(3,\,6,\,12,\dots\).
- Here \(a_{1}=3,\;r=2\).
- \(S_{5}=3\frac{1-2^{5}}{1-2}=3\frac{1-32}{-1}=93.\)
16 Logarithmic & exponential equations (Pure 2)
- Law of indices: \(a^{m}a^{n}=a^{m+n},\;(a^{m})^{n}=a^{mn},\;a^{m}/a^{n}=a^{m-n}\).
- Log rules (base \(a>0,\;aeq1\)):
\(\log_{a}(MN)=\log_{a}M+\log_{a}N\),
\(\log_{a}\dfrac{M}{N}= \log_{a}M-\log_{a}N\),
\(\log_{a}(M^{k})=k\log_{a}M\),
\(\log_{a}a=1,\;\log_{a}1=0\).
- Changing base: \(\displaystyle\log_{b}M=\frac{\log_{a}M}{\log_{a}b}\).
- Typical solution method: rewrite the equation so that the same base (or log) appears on both sides, then equate exponents or use the definition of log.
Example
Solve \(2^{x}=5\).
- Take natural logs: \(\ln2^{x}=\ln5\) → \(x\ln2=\ln5\).
- \(x=\dfrac{\ln5}{\ln2}\approx2.322.\)
17 Vectors (Pure 3)
17.1 Notation & basic operations
- Vector \(\mathbf{a}=a_{1}\mathbf{i}+a_{2}\mathbf{j}+a_{3}\mathbf{k}\) (2‑D: omit the \(k\)-component).
- Magnitude: \(|\mathbf{a}|=\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}\).
- Scalar (dot) product: \(\mathbf{a}\!\cdot\!\mathbf{b}=|\mathbf{a}||\mathbf{b}|\cos\theta\) = \(a_{1}b_{1}+a_{2}b_{2}+a_{3}b_{3}\).
- Two vectors are perpendicular iff \(\mathbf{a}\!\cdot\!\mathbf{b}=0\).
17.2 Equation of a line (2‑D)
Through point \(P(x_{1},y_{1})\) with direction vector \(\mathbf{d}=\langle a,b\rangle\):
\[
\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}.
\]
17.3 Example – Angle between vectors
Find the angle between \(\mathbf{u}=\langle2, -1\rangle\) and \(\mathbf{v}=\langle1,3\rangle\).
- \(\mathbf{u}\!\cdot\!\mathbf{v}=2\cdot1+(-1)\cdot3=-1\).
-
- \(\cos\theta=\dfrac{-1}{\sqrt{5}\sqrt{10}}=-\dfrac{1}{\sqrt{50}}=-\dfrac{\sqrt{2}}{10}\).
- \(\theta\approx95.7^{\circ}\).
18 First‑order separable differential equations (Pure 3)
18.1 General form
\[
\frac{dy}{dx}=g(x)h(y)\quad\Longrightarrow\quad\frac{dy}{h(y)}=g(x)\,dx.
\]
18.2 Solution procedure
- Separate the variables.
- Integrate both sides (add constant \(C\)).
- If an initial condition \((x_{0},y_{0})\) is given, substitute to find \(C\).
18.3 Example
Solve \(\displaystyle\frac{dy}{dx}=3x^{2}y^{2}\) with \(y(0)=1\).
- Separate: \(\dfrac{dy}{y^{2}}=3x^{2}\,dx\).
- Integrate: \(-\dfrac{1}{y}=x^{3}+C\).
- Use \(y(0)=1\): \(-1=0+C\) → \(C=-1\).
- Thus \(-\dfrac{1}{y}=x^{3}-1\) → \(y=\dfrac{-1}{x^{3}-1}=\dfrac{1}{1-x^{3}}\).
19 Complex numbers (Pure 3)
19.1 Forms
- Cartesian: \(z=a+bi\) with \(i^{2}=-1\).
- Polar: \(z=r\bigl(\cos\theta+i\sin\theta\bigr)=re^{i\theta}\) where \(r=|z|=\sqrt{a^{2}+b^{2}}\) and \(\theta=\arg z\).
19.2 Operations
- Multiplication: \(r_{1}e^{i\theta_{1}}\cdot r_{2}e^{i\theta_{2}}=r_{1}r_{2}e^{i(\theta_{1}+\theta_{2})}\).
- Division: \(\dfrac{r_{1}e^{i\theta_{1}}}{r_{2}e^{i\theta_{2}}}= \dfrac{r_{1}}{r_{2}}e^{i(\theta_{1}-\theta_{2})}\).
- De‑Moivre’s theorem: \((\cos\theta+i\sin\theta)^{n}= \cos n\theta+i\sin n\theta\).
19.3 Example – Solving \(z^{2}+1=0\)
- Write as \(z^{2}=-1= e^{i\pi}\) (or \(e^{i(\pi+2k\pi)}\)).
- Take square roots: \(z=e^{i(\pi/2+ k\pi)}\) → \(z=\pm i\).
20 Mechanics (Core A‑Level)
20.1 Kinematics (straight‑line motion)
- Velocity: \(v=\dfrac{dx}{dt}\).
- Acceleration: \(a=\dfrac{dv}{dt}=\dfrac{d^{2}x}{dt^{2}}\).
- For constant acceleration: \(v=u+at,\; s=ut+\tfrac12at^{2},\; v^{2}=u^{2}+2as\).
20.2 Forces & Newton’s laws
- Resultant force \(\mathbf{F}=m\mathbf{a}\).
- Weight: \(W=mg\) (downward).
- Friction (kinetic): \(F_{k}=\mu_{k}N\); (static): \(F_{s}\le\mu_{s}N\).
20.3 Work, energy & power
- Work: \(W=\mathbf{F}\!\cdot\!\mathbf{s}=Fs\cos\theta\).
- Kinetic energy: \(E_{k}=\dfrac12mv^{2}\).
- Potential energy (gravity): \(E_{p}=mgh\).
- Power: \(P=\dfrac{dW}{dt}=Fv\) (if force and motion are collinear).
20.4 Momentum
- Linear momentum: \(\mathbf{p}=m\mathbf{v}\).
- Impulse–momentum theorem: \(\displaystyle\int\mathbf{F}\,dt=\Delta\mathbf{p}\).
20.5 Example – Projectile motion (no air resistance)
Launch speed \(u\) at angle \(\theta\) above the horizontal.
- Horizontal: \(x=ut\cos\theta\) (constant velocity).
- Vertical: \(y=ut\sin\theta-\tfrac12gt^{2}\).
- Range: \(R=\dfrac{