A function assigns each element of a domain a single element of a codomain. In the syllabus the notation f(x) is used.
Example. For $f(x)=2x+3$, the inverse is $f^{-1}(x)=\dfrac{x-3}{2}$.
The discriminant $\Delta=b^{2}-4ac$ tells us how many real roots the quadratic has:
| Discriminant $\Delta$ | Number of real roots | Root type |
|---|---|---|
| $\Delta>0$ | 2 distinct real roots | $x=\dfrac{-b\pm\sqrt{\Delta}}{2a}$ |
| $\Delta=0$ | 1 real double root | $x=-\dfrac{b}{2a}$ |
| $\Delta<0$ | 0 real roots (2 complex conjugates) | Complex roots |
To solve $ax^{2}+bx+c\;{\color{blue}{\lessgtr}}\;0$:
Example. Solve $x^{2}-4x-5\ge0$.
Sometimes the variable appears as a function, e.g. $x^{4}-5x^{2}+4=0$. Set $u=x^{2}$, solve the resulting quadratic in $u$, then back‑substitute.
Example. $x^{4}-5x^{2}+4=0$
Typical A‑Level question: solve the system
\[ \begin{cases} y=mx+c\\[2mm] ax^{2}+bx+c=0 \end{cases} \]Substitute the linear expression for $y$ into the quadratic, solve the resulting quadratic in $x$, then obtain $y$.
Worked example. Solve
\[ \begin{cases} y=2x-3\\[2mm] x^{2}+y^{2}=25 \end{cases} \]For a non‑vertical line the gradient $m$ is
$$m=\frac{\Delta y}{\Delta x}= \frac{y_{2}-y_{1}}{x_{2}-x_{1}}$$With a known point $(x_{1},y_{1})$:
$$y-y_{1}=m\,(x-x_{1})\tag{1}$$If the $y$‑intercept $c$ is known (point where $x=0$):
$$y=mx+c\tag{2}$$Multiplying (1) or (2) to clear fractions gives
$$Ax+By+C=0\tag{3}$$where $A$, $B$, $C$ are not all zero. Gradient $m=-\dfrac{A}{B}$ (provided $Beq0$). For a vertical line $B=0$ and the equation reduces to $x=k$.
Given
\[ \begin{cases} A_{1}x+B_{1}y+C_{1}=0\\[2mm] A_{2}x+B_{2}y+C_{2}=0 \end{cases} \]the determinant $\Delta=A_{1}B_{2}-A_{2}B_{1}$ determines the relationship:
Use substitution (replace $y$ from the linear equation in the quadratic) and then apply the methods of §2.
Centre $C(h,k)$, radius $r>0$.
Relation to centre and radius:
$$h=-\frac{D}{2},\qquad k=-\frac{E}{2},\qquad r=\sqrt{h^{2}+k^{2}-F}$$The right‑hand side must be positive for a real circle.
Find the points where the line $y=2x+1$ cuts the circle $(x-3)^{2}+(y+2)^{2}=25$.
If $P(p,q)$ lies outside the circle $(x-h)^{2}+(y-k)^{2}=r^{2}$, the length of the tangent $PT$ is
$$PT=\sqrt{(p-h)^{2}+(q-k)^{2}-r^{2}}$$Equating this length to the distance from $P$ to a point on the line yields the required tangent equations.
Example. In a circle of radius $5\,$cm, a $60^{\circ}$ sector has $\theta=\pi/3$ rad, so $\ell=5\pi/3\approx5.24\,$cm and $A_{\text{sector}}=\frac12\cdot5^{2}\cdot\pi/3\approx13.1\,$cm².
When a line makes an angle $\theta$ with the positive $x$‑axis, its gradient is $\displaystyle m=\tan\theta$.
Exact values for the principal angles:
| Angle | sin | cos | tan |
|---|---|---|---|
| 0° (0 rad) | 0 | 1 | 0 |
| 30° (π/6) | ½ | √3/2 | 1/√3 |
| 45° (π/4) | √2/2 | √2/2 | 1 |
| 60° (π/3) | √3/2 | ½ | √3 |
| 90° (π/2) | 1 | 0 | – (undefined) |
Finding an angle from a known gradient:
$$\theta = \arctan m\qquad\text{(principal value in }(-\tfrac{\pi}{2},\tfrac{\pi}{2})\text{)}$$| Concept | Formula | Comments |
|---|---|---|
| Gradient (slope) | $m=\dfrac{y_{2}-y_{1}}{x_{2}-x_{1}}$ | Undefined for vertical lines. |
| Point‑slope equation | $y-y_{1}=m(x-x_{1})$ | Any known point may be used. |
| Slope‑intercept equation | $y=mx+c$ | $c$ is the $y$‑intercept. |
| General linear equation | $Ax+By+C=0$ | Gradient $m=-A/B$ (if $Beq0$). |
| Parallel lines | $m_{1}=m_{2}$ | Or $A_{1}B_{2}=A_{2}B_{1}$. |
| Perpendicular lines | $m_{1}m_{2}=-1$ | Or $A_{1}A_{2}+B_{1}B_{2}=0$. |
| Intersection of two lines | $x=\dfrac{B_{1}C_{2}-B_{2}C_{1}}{A_{1}B_{2}-A_{2}B_{1}},\; y=\dfrac{C_{1}A_{2}-C_{2}A_{1}}{A_{1}B_{2}-A_{2}B_{1}}$ | Denominator $eq0$ for a unique point. |
| Mid‑point | $\bigl(\dfrac{x_{1}+x_{2}}{2},\dfrac{y_{1}+y_{2}}{2}\bigr)$ | |
| Distance | $\sqrt{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}$ | |
| Quadratic discriminant | $\Delta=b^{2}-4ac$ | Determines number & type of real roots. |
| Circle (standard) | $(x-h)^{2}+(y-k)^{2}=r^{2}$ | Centre $(h,k)$, radius $r$. |
| Circle (general) | $x^{2}+y^{2}+Dx+Ey+F=0$ | Centre $(-D/2,-E/2)$, $r=\sqrt{(D^{2}+E^{2})/4-F}$. |
| Radian–degree conversion | $1\;\text{rad}=180^{\circ}/\pi,\;\;1^{\circ}=\pi/180\;\text{rad}$ | |
| Arc length | $\ell=r\theta$ (θ in radians) | |
| Sector area | $A_{\text{sector}}=\frac12 r^{2}\theta$ |
Create an account or Login to take a Quiz
Log in to suggest improvements to this note.
Your generous donation helps us continue providing free Cambridge IGCSE & A-Level resources, past papers, syllabus notes, revision questions, and high-quality online tutoring to students across Kenya.