Coordinate geometry: equations of lines and curves, parametric equations

Cambridge A‑Level Mathematics 9709 – Pure Mathematics 3 (P3) Coordinate Geometry, Conics, Parametric Equations & Related Algebra

1. Algebra (P3 3.1)

  • Polynomial division
    • Long division – works for any degree.
    • Synthetic division – quicker when the divisor is of the form x − a.
  • Factor & remainder theorems

    If \(f(x)=0\) at \(x=a\) then \((x-a)\) is a factor of \(f(x)\). The remainder on division of \(f(x)\) by \((x-a)\) is \(f(a)\).

  • Partial‑fraction decomposition (required for integration of rational functions)

    Any proper rational function \(\displaystyle\frac{P(x)}{Q(x)}\) can be written as a sum of simpler fractions. Three cases are required by the syllabus:

    1. Distinct linear factors \[ \frac{P(x)}{(x-a)(x-b)}=\frac{A}{x-a}+\frac{B}{x-b}. \] Example: \(\displaystyle\frac{3x+5}{(x-1)(x+2)}\) \[ \frac{3x+5}{(x-1)(x+2)}=\frac{A}{x-1}+\frac{B}{x+2} \Longrightarrow 3x+5=A(x+2)+B(x-1). \] Solving gives \(A=2,\;B=1\); hence \(\displaystyle\frac{3x+5}{(x-1)(x+2)}=\frac{2}{x-1}+\frac{1}{x+2}\).
    2. Repeated linear factors \[ \frac{P(x)}{(x-a)^{2}}=\frac{A}{x-a}+\frac{B}{(x-a)^{2}}. \] Example: \(\displaystyle\frac{4x-1}{(x-3)^{2}}\) \[ \frac{4x-1}{(x-3)^{2}}=\frac{A}{x-3}+\frac{B}{(x-3)^{2}} \Longrightarrow 4x-1=A(x-3)+B. \] Comparing coefficients gives \(A=4,\;B=11\); thus \(\displaystyle\frac{4x-1}{(x-3)^{2}}=\frac{4}{x-3}+\frac{11}{(x-3)^{2}}\).
    3. Irreducible quadratic factors \[ \frac{P(x)}{x^{2}+px+q}= \frac{Ax+B}{x^{2}+px+q}. \] Example: \(\displaystyle\frac{2x^{2}+3x+5}{x^{2}+4}\) \[ \frac{2x^{2}+3x+5}{x^{2}+4}= \frac{Ax+B}{x^{2}+4}. \] Multiply through: \(2x^{2}+3x+5=Ax+B\). Equating coefficients gives \(A=2,\;B=3\); hence \(\displaystyle\frac{2x^{2}+3x+5}{x^{2}+4}=2+\frac{3}{x^{2}+4}\).
  • Binomial expansion with rational exponents (valid for \(|x|<1\)) \[ (1+x)^{n}=1+nx+\frac{n(n-1)}{2!}x^{2}+\frac{n(n-1)(n-2)}{3!}x^{3}+\cdots \] Example (non‑integer exponent): \((1+x)^{3/2}\) \[ (1+x)^{3/2}=1+\frac{3}{2}x-\frac{3}{8}x^{2}+\frac{1}{16}x^{3}+\cdots\qquad(|x|<1). \]

Example 1 – Polynomial division (synthetic)

  1. Divide \(f(x)=2x^{3}-3x^{2}+5x-7\) by \(g(x)=x-2\).
  2. Synthetic division:
    2 | 2  -3   5  -7
          4   2   14
          ----------------
            2   1   7   7
            
    Quotient \(=2x^{2}+x+7\), remainder \(=7\). \[ \frac{2x^{3}-3x^{2}+5x-7}{x-2}=2x^{2}+x+7+\frac{7}{x-2}. \]

2. Logarithmic & Exponential Functions (P3 3.2)

  • Law of logarithms (no change‑of‑base required) \[ \log(ab)=\log a+\log b,\qquad \log\frac{a}{b}=\log a-\log b,\qquad \log(a^{n})=n\log a. \] Note: The Cambridge exam never asks for a change‑of‑base; you should work directly with the given base.
  • Solving exponential equations – take logarithms of both sides. Example: \(\displaystyle5^{2x-1}=3^{x+2}\) \[ (2x-1)\log5=(x+2)\log3\;\Longrightarrow\;x=\frac{2\log5-\log3}{2\log5-\log3}. \] (solve algebraically after expanding).
  • Linearisation of power laws – converting \(y=kx^{n}\) to a straight line on a log–log plot: \[ \log y = \log k + n\log x. \] Gradient = \(n\), intercept = \(\log k\).

Example 2 – Linearising data

Given \(y=4x^{1.5}\), take logs: \(\log y = \log4 + 1.5\log x\). Plotting \(\log y\) against \(\log x\) yields a straight line of gradient \(1.5\) and intercept \(\log4\).

3. Trigonometry (P3 3.3)

  • Fundamental identities: \(\sin^{2}\theta+\cos^{2}\theta=1\), \(\tan\theta=\dfrac{\sin\theta}{\cos\theta}\).
  • Sum & difference formulae: \[ \sin(\alpha\pm\beta)=\sin\alpha\cos\beta\pm\cos\alpha\sin\beta,\qquad \cos(\alpha\pm\beta)=\cos\alpha\cos\beta\mp\sin\alpha\sin\beta. \]
  • Double‑, half‑ and triple‑angle formulae (as required for exam questions).
  • R‑formula – expressing \(a\sin\theta+b\cos\theta\) as a single sinusoid.

    Derivation:

    1. Assume \(a\sin\theta+b\cos\theta=R\sin(\theta+\alpha)\).
    2. Expand RHS: \(R\sin\theta\cos\alpha+R\cos\theta\sin\alpha\).
    3. Match coefficients: \[ a=R\cos\alpha,\qquad b=R\sin\alpha. \] Hence \(R=\sqrt{a^{2}+b^{2}}\) and \(\displaystyle\tan\alpha=\frac{b}{a}\) (choose \(\alpha\) in the correct quadrant).

    Common pitfalls

    • If \(a<0\) the angle \(\alpha\) lies in the second or third quadrant; adjust \(\alpha\) by adding \(\pi\) to keep \(\tan\alpha=b/a\) correct.
    • Remember that \(R\ge0\); the sign is absorbed into \(\alpha\).

Example 3 – Solving a trig equation with the R‑formula

Solve \(2\sin\theta-\sqrt3\cos\theta=1\) for \(0\le\theta<2\pi\).

  1. Write \(2\sin\theta-\sqrt3\cos\theta=R\sin(\theta+\alpha)\). \(R=\sqrt{2^{2}+(\!-\sqrt3)^{2}}=\sqrt7\), \(\tan\alpha=\dfrac{-\sqrt3}{2}\) ⇒ \(\alpha\approx-0.713\) rad (or \(5.570\) rad).
  2. Equation becomes \(\sqrt7\,\sin(\theta+\alpha)=1\) ⇒ \(\sin(\theta+\alpha)=\dfrac1{\sqrt7}\).
  3. Solutions for \(\theta+\alpha\): \(\theta+\alpha =\sin^{-1}\!\left(\frac1{\sqrt7}\right)\) or \(\pi-\sin^{-1}\!\left(\frac1{\sqrt7}\right)\). Subtract \(\alpha\) to obtain the two values of \(\theta\) in \([0,2\pi)\).

4. Differentiation (P3 3.4)

FunctionDerivative
\(e^{ax}\)\(ae^{ax}\)
\(\ln x\)\(\dfrac1x\)
\(\tan^{-1}x\)\(\dfrac1{1+x^{2}}\)
\(u\,v\) (product)\(u'v+uv'\)
\(\dfrac{u}{v}\) (quotient)\(\dfrac{u'v-uv'}{v^{2}}\)
  • Parametric differentiation – if \(x=x(t),\;y=y(t)\) and \(\dfrac{dx}{dt}eq0\), then \[ \frac{dy}{dx}= \frac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}. \]
  • Implicit differentiation – differentiate both sides of an equation involving \(x\) and \(y\) and solve for \(\dfrac{dy}{dx}\).

Example 4 – Tangent to a parametric curve

Given \(x=t^{2},\;y=t^{3}\), find \(\dfrac{dy}{dx}\) at \(t=2\).

  1. \(\displaystyle\frac{dx}{dt}=2t,\;\frac{dy}{dt}=3t^{2}\).
  2. \(\displaystyle\frac{dy}{dx}= \frac{3t^{2}}{2t}= \frac{3t}{2}\).
  3. At \(t=2\), \(\displaystyle\frac{dy}{dx}=3.\)

5. Integration (P3 3.5)

IntegrandIntegral + C
\(e^{ax}\)\(\dfrac{1}{a}e^{ax}\)
\(\sin(ax)\)\(-\dfrac{1}{a}\cos(ax)\)
\(\cos(ax)\)\(\dfrac{1}{a}\sin(ax)\)
\(\sec^{2}(ax)\)\(\dfrac{1}{a}\tan(ax)\)
\(\dfrac{1}{x}\)\(\ln|x|\)
\(\dfrac{1}{x^{2}+a^{2}}\)\(\dfrac{1}{a}\tan^{-1}\!\left(\dfrac{x}{a}\right)\)
  • Integration by parts – \(\displaystyle\int u\,dv = uv-\int v\,du\).
  • Trigonometric substitution – used for integrands containing \(\sqrt{a^{2}\!-\!x^{2}},\;\sqrt{a^{2}\!+\!x^{2}},\;\sqrt{x^{2}\!-\!a^{2}}\).
  • Partial‑fraction integration – decompose first (see Section 1) and then integrate each term using the table above.

Example 5 – \(\displaystyle\int\frac{x}{x^{2}+4}\,dx\)

Let \(u=x^{2}+4\), then \(du=2x\,dx\) ⇒ \(\dfrac{x\,dx}{x^{2}+4}=\dfrac12\frac{du}{u}\). Hence

\[ \int\frac{x}{x^{2}+4}\,dx = \frac12\ln|x^{2}+4|+C. \]

6. Numerical Solution of Equations (P3 3.6)

  • Graphical method – plot \(y=f(x)\) and read off the x‑intercepts.
  • Fixed‑point iteration – rewrite \(f(x)=0\) as \(x=g(x)\) and iterate \[ x_{n+1}=g(x_{n})\quad\text{until }|x_{n+1}-x_{n}|<\text{required tolerance}. \]
  • Newton–Raphson method – rapid convergence when the initial guess is close: \[ x_{n+1}=x_{n}-\frac{f(x_{n})}{f'(x_{n})}. \]

Example 6 – Newton–Raphson for \(x^{3}-x-2=0\)

  1. \(f(x)=x^{3}-x-2,\;f'(x)=3x^{2}-1.\)
  2. Start with \(x_{0}=1.5\): \[ x_{1}=1.5-\frac{1.5^{3}-1.5-2}{3(1.5)^{2}-1}=1.5-\frac{-0.125}{5.75}=1.5217. \]
  3. Repeating gives \(x\approx1.52138\) (root to 5 dp).

7. Vectors (P3 3.7)

  • Notation – \(\mathbf{a}= \langle a_{1},a_{2}\rangle\) (2‑D) or \(\langle a_{1},a_{2},a_{3}\rangle\) (3‑D).
  • Operations
    • Addition: \(\mathbf{a}+\mathbf{b}= \langle a_{1}+b_{1},\,a_{2}+b_{2}\rangle\).
    • Scalar multiplication: \(k\mathbf{a}= \langle ka_{1},ka_{2}\rangle\).
    • Dot product: \(\mathbf{a}\cdot\mathbf{b}=a_{1}b_{1}+a_{2}b_{2}\); magnitude \(|\mathbf{a}|=\sqrt{\mathbf{a}\cdot\mathbf{a}}\).
  • Equation of a line (vector form) \[ \mathbf{r}= \mathbf{r}_{0}+t\mathbf{d}, \] where \(\mathbf{r}_{0}\) is a known point and \(\mathbf{d}\) a direction vector.
  • Parallel & perpendicular conditions
    • Parallel: \(\mathbf{d}_{1}=k\mathbf{d}_{2}\) (or slopes equal).
    • Perpendicular: \(\mathbf{d}_{1}\cdot\mathbf{d}_{2}=0\).
  • Angle between two vectors \[ \cos\theta=\frac{\mathbf{a}\cdot\mathbf{b}}{|\mathbf{a}|\,|\mathbf{b}|}. \]

Example 7 – Distance from a point to a line (vector method)

Line through \(A(1,2)\) with direction \(\mathbf{d}= \langle 3,-4\rangle\); point \(P(5,0)\).

  1. \(\mathbf{AP}= \langle4,-2\rangle\).
  2. Perpendicular distance: \[ d=\frac{|\mathbf{d}\times\mathbf{AP}|}{|\mathbf{d}|} =\frac{|3(-2)-(-4)4|}{\sqrt{3^{2}+(-4)^{2}}} =\frac{2}{5}=0.4. \]

8. Coordinate Geometry – Straight Lines (P3 4.1)

  • Gradient (slope) form – from two points \((x_{1},y_{1}), (x_{2},y_{2})\): \[ m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}},\qquad y-y_{0}=m(x-x_{0}). \]
  • Intercept form – line cutting the axes at \((a,0)\) and \((0,b)\): \[ \frac{x}{a}+\frac{y}{b}=1. \]
  • General (standard) form – \(Ax+By+C=0\). Gradient \(m=-\dfrac{A}{B}\) (if \(Beq0\)).
  • Distance from a point \((x_{0},y_{0})\) to the line \[ d=\frac{|Ax_{0}+By_{0}+C|}{\sqrt{A^{2}+B^{2}}}. \]
  • Angle between two lines with slopes \(m_{1},m_{2}\): \[ \tan\theta=\left|\frac{m_{2}-m_{1}}{1+m_{1}m_{2}}\right|. \] If either line is vertical, use the direction‑vector form \(\tan\theta=|(\mathbf{d}_{1}\times\mathbf{d}_{2})|/(\mathbf{d}_{1}\cdot\mathbf{d}_{2})\).

Example 8 – Finding the equation of a line

Through points \(P(2,‑1)\) and \(Q(5,3)\).

  1. Gradient: \(m=\dfrac{3-(-1)}{5-2}= \dfrac{4}{3}\).
  2. Using point‑slope with \(P\): \(y+1=\dfrac{4}{3}(x-2)\) ⇒ \(3y+3=4x-8\) ⇒ \(4x-3y-11=0.\)

9. Coordinate Geometry – Conics (P3 4.2 & 4.3)

  • Circle – centre \((h,k)\), radius \(r\): \((x-h)^{2}+(y-k)^{2}=r^{2}\).
  • Parabola – standard forms \[ y^{2}=4ax\;( \text{opens right}),\qquad x^{2}=4ay\;( \text{opens up}). \] General form \(Ax^{2}+By^{2}+2Gx+2Fy+C=0\) with exactly one of \(A,B\) zero.
  • Ellipse – \(\dfrac{x^{2}}{a^{2}}+\dfrac{y^{2}}{b^{2}}=1\) (a ≥ b). Foci at \((\pm c,0)\) where \(c^{2}=a^{2}-b^{2}\).
  • Hyperbola – \(\dfrac{x^{2}}{a^{2}}-\dfrac{y^{2}}{b^{2}}=1\) (opens left‑right) or \(\dfrac{y^{2}}{b^{2}}-\dfrac{x^{2}}{a^{2}}=1\) (opens up‑down). Asymptotes \(y=\pm\frac{b}{a}x\).
  • Key properties required for the exam: centre, vertices, foci, directrices, eccentricity, latus‑rectum, and the method of completing the square to put a quadratic equation into standard form.

Example 9 – Putting a conic into standard form

Given \(9x^{2}+16y^{2}-54x+64y+71=0\).

  1. Group x‑terms and y‑terms: \((9x^{2}-54x)+(16y^{2}+64y)=-71\).
  2. Factor coefficients: \(9(x^{2}-6x)+16(y^{2}+4y)=-71\).
  3. Complete squares: \(x^{2}-6x+9=(x-3)^{2}\) (add \(9\) inside), \(y^{2}+4y+4=(y+2)^{2}\) (add \(4\) inside). Adjust RHS: \(-71+9\cdot9+16\cdot4=-71+81+64=74.\)
  4. Result: \(\displaystyle\frac{(x-3)^{2}}{ \frac{74}{9}}+\frac{(y+2)^{2}}{ \frac{74}{16}}=1\) ⇒ ellipse with centre \((3,-2)\).

10. Parametric Equations (P3 4.4)

  • General form: \(x=x(t),\;y=y(t)\) where \(t\) is the parameter.
  • Eliminating the parameter – solve one equation for \(t\) (or a function of \(t\)) and substitute into the other to obtain a Cartesian equation.
  • Differentiation – slope of the curve: \(\displaystyle\frac{dy}{dx}= \frac{dy/dt}{dx/dt}\). Second derivative: \(\displaystyle\frac{d^{2}y}{dx^{2}}=\frac{d}{dt}\!\left(\frac{dy}{dx}\right)\Big/ \frac{dx}{dt}\).
  • Arc length – for \(t\in[a,b]\): \[ s=\int_{a}^{b}\sqrt{\left(\frac{dx}{dt}\right)^{2}+\left(\frac{dy}{dt}\right)^{2}}\;dt. \]
  • Area under a parametric curve – between \(t_{1}\) and \(t_{2}\): \[ A=\int_{t_{1}}^{t_{2}} y\,\frac{dx}{dt}\;dt. \]

Example 10 – Eliminating the parameter

Given \(x=2\cos t,\;y=3\sin t\).

  • Square both: \(\displaystyle\frac{x^{2}}{4}+\frac{y^{2}}{9}= \cos^{2}t+\sin^{2}t=1.\)
  • Cartesian equation: \(\displaystyle\frac{x^{2}}{4}+\frac{y^{2}}{9}=1\) – an ellipse.

Example 11 – Tangent to a parametric curve

Curve: \(x=1+t^{2},\;y=2t\). Find the equation of the tangent at \(t=1\).

  1. \(\displaystyle\frac{dx}{dt}=2t,\;\frac{dy}{dt}=2.\)
  2. Slope at \(t=1\): \(\displaystyle m=\frac{dy/dt}{dx/dt}\Big|_{t=1}= \frac{2}{2}=1.\)
  3. Point on the curve: \((x,y)=(1+1^{2},\,2\cdot1)=(2,2).\)
  4. Using point‑slope: \(y-2=1(x-2)\) ⇒ \(y=x.\)

11. Summary of Key Formulae

TopicKey formulae
Gradient form\(y-y_{0}=m(x-x_{0}),\; m=\dfrac{y_{2}-y_{1}}{x_{2}-x_{1}}\)
Intercept form\(\dfrac{x}{a}+\dfrac{y}{b}=1\)
Distance point‑line\(d=\dfrac{|Ax_{0}+By_{0}+C|}{\sqrt{A^{2}+B^{2}}}\)
Angle between lines\(\tan\theta=\Bigl|\dfrac{m_{2}-m_{1}}{1+m_{1}m_{2}}\Bigr|\)
R‑formula\(a\sin\theta+b\cos\theta=R\sin(\theta+\alpha),\;R=\sqrt{a^{2}+b^{2}},\;\tan\alpha=\dfrac{b}{a}\)
Parametric slope\(\displaystyle\frac{dy}{dx}= \frac{dy/dt}{dx/dt}\)
Arc length (parametric)\(\displaystyle s=\int\sqrt{\bigl(dx/dt\bigr)^{2}+\bigl(dy/dt\bigr)^{2}}\,dt\)
Area (parametric)\(\displaystyle A=\int y\,\frac{dx}{dt}\,dt\)

12. Quick Revision Checklist

  • Can you perform synthetic division and state the remainder theorem?
  • Are you comfortable decomposing any proper rational function into partial fractions (three cases)?
  • Do you remember the three logarithm laws and that no change‑of‑base is needed?
  • Can you derive and apply the R‑formula, paying attention to the quadrant of \(\alpha\)?
  • Are you fluent with parametric differentiation, second derivative, arc length and area formulas?
  • Can you quickly write the distance‑from‑point‑to‑line formula and the angle‑between‑lines formula?
  • Do you know how to complete the square to convert a general quadratic into the standard form of a conic?

Create an account or Login to take a Quiz

40 views
0 improvement suggestions

Log in to suggest improvements to this note.