Complex numbers: representation, arithmetic, modulus-argument form, loci, De Moivre’s theorem

Complex Numbers – Cambridge 9709 (Pure Mathematics 3, Topic 3.9)

1. Key Definitions & Fundamental Facts

  • Complex number: \(z = a + bi\) with \(a,b\in\mathbb R\) and \(i^{2}=-1\).
  • Real part: \(\operatorname{Re}(z)=a\).
  • Imaginary part: \(\operatorname{Im}(z)=b\).
  • Modulus (absolute value): \(|z| = \sqrt{a^{2}+b^{2}}\).
  • Argument: \(\arg(z)=\theta\) is the oriented angle measured from the positive real axis to the line joining the origin to the point \((a,b)\).
    Principal value: \(-\pi < \theta \le \pi\) (equivalently \(0\le\theta<2\pi\) if preferred).
  • Conjugate: \(\overline{z}=a-bi\). Geometrically, \(\overline{z}\) is the reflection of \(z\) in the real axis; \(|\overline{z}|=|z|\) and \(\arg(\overline{z})=-\theta\).
  • Equality of complex numbers (syllabus requirement): \[ z_{1}=z_{2}\;\Longleftrightarrow\; \operatorname{Re}(z_{1})=\operatorname{Re}(z_{2})\;\text{and}\; \operatorname{Im}(z_{1})=\operatorname{Im}(z_{2}). \]
Argand diagram showing a point \(z=a+bi\), its modulus \(|z|\), argument \(\theta\), and conjugate \(\overline{z}\) (reflection in the real axis).

2. Forms of a Complex Number

FormExpressionWhen to use
Rectangular (Cartesian) \(z = a + bi\) Addition, subtraction, comparison, finding real/imag parts.
Polar (modulus‑argument) \(z = r(\cos\theta + i\sin\theta)\) Multiplication, division, powers, roots, trigonometric identities.
“cis” shorthand \(\displaystyle \operatorname{cis}\theta \equiv \cos\theta+i\sin\theta,\qquad z = r\,\operatorname{cis}\theta\) Compact notation for polar form; essential for De Moivre’s theorem.

3. Converting Between Forms

3.1 Rectangular → Polar

Given \(z=a+bi\):

\[ r = \sqrt{a^{2}+b^{2}},\qquad \theta = \operatorname{atan2}(b,a) \]
  • Using \(\operatorname{atan2}\) (preferred on calculators/computers): it automatically places \(\theta\) in the correct quadrant.
  • Manual method (if \(\operatorname{atan2}\) is unavailable):
    1. Compute \(\theta_{0}= \tan^{-1}\!\bigl(\dfrac{b}{a}\bigr)\) (principal value \(-\frac{\pi}{2}<\theta_{0}<\frac{\pi}{2}\)).
    2. Adjust for the quadrant:
      • If \(a>0\): \(\theta=\theta_{0}\).
      • If \(a<0\) and \(b\ge0\): \(\theta=\theta_{0}+\pi\).
      • If \(a<0\) and \(b<0\): \(\theta=\theta_{0}-\pi\).
      • If \(a=0\) and \(b>0\): \(\theta=\frac{\pi}{2}\).
      • If \(a=0\) and \(b<0\): \(\theta=-\frac{\pi}{2}\).

3.2 Polar → Rectangular

\[ a = r\cos\theta,\qquad b = r\sin\theta. \] Insert the known \(r\) and \(\theta\) into the definitions of cosine and sine.

Example – Conversion

Convert \(z = -3+4i\) to polar form.

  1. \(r=\sqrt{(-3)^{2}+4^{2}}=5.\)
  2. \(\theta=\operatorname{atan2}(4,-3)=\pi-\tan^{-1}\!\frac{4}{3}\approx 2.2143\text{ rad}.\)
  3. Hence \(z=5\operatorname{cis}2.2143\) (or \(5(\cos2.2143+i\sin2.2143)\)).

4. Arithmetic Operations

Choose the form that makes the operation simplest.

OperationRectangular FormPolar Form
Addition / Subtraction \((a+bi)\pm(c+di)= (a\pm c)+(b\pm d)i\) – (normally performed in rectangular form)
Multiplication \((a+bi)(c+di)= (ac-bd)+(ad+bc)i\) \(r_{1}\operatorname{cis}\theta_{1}\times r_{2}\operatorname{cis}\theta_{2}= (r_{1}r_{2})\operatorname{cis}(\theta_{1}+\theta_{2})\)
Division \(\dfrac{a+bi}{c+di}= \dfrac{(a+bi)(c-di)}{c^{2}+d^{2}}\) \(\dfrac{r_{1}\operatorname{cis}\theta_{1}}{r_{2}\operatorname{cis}\theta_{2}}= \left(\dfrac{r_{1}}{r_{2}}\right)\operatorname{cis}(\theta_{1}-\theta_{2})\)
Conjugate \(\overline{z}=a-bi\) \(\overline{z}=r\operatorname{cis}(-\theta)\)
Modulus \(|z|=\sqrt{a^{2}+b^{2}}\) \(|z|=r\)

Worked Example – Division in Polar Form

Find \(\displaystyle\frac{3+4i}{1-2i}\).

  1. Convert each number to polar form: \[ 3+4i = 5\operatorname{cis}\!\bigl(\tan^{-1}\tfrac{4}{3}\bigr)=5\operatorname{cis}0.9273, \qquad 1-2i = \sqrt5\operatorname{cis}\!\bigl(\tan^{-1}\tfrac{-2}{1}\bigr)=\sqrt5\operatorname{cis}(-1.1071). \]
  2. Apply the division rule: \[ \frac{3+4i}{1-2i}= \frac{5}{\sqrt5}\operatorname{cis}\!\bigl(0.9273-(-1.1071)\bigr) =\sqrt5\operatorname{cis}(2.0344). \]
  3. Return to rectangular form (optional): \[ \sqrt5\bigl(\cos2.0344+i\sin2.0344\bigr)\approx 0.6+1.8i . \]

5. Modulus‑Argument (Polar) Form – Summary

Every non‑zero complex number can be written uniquely as

\[ z = r\operatorname{cis}\theta = r(\cos\theta+i\sin\theta), \]

where

  • \(r=|z|>0\),
  • \(\theta=\arg(z)\) is taken in the principal interval \(-\pi<\theta\le\pi\).

6. Loci in the Complex Plane

Typical A‑Level questions ask for the set of points \(z\) satisfying a given condition. The table below lists the most common forms together with their geometric interpretation.

Condition Geometric description Typical algebraic form
\(|z-c| = k\) (\(k>0\)) Circle centred at \(c\) with radius \(k\).
\(\operatorname{Re}\!\big((z-z_{1})\overline{(z-z_{2})}\big)=0\) Perpendicular bisector of the segment joining \(z_{1}\) and \(z_{2}\).
\(\arg(z-a)=\alpha\) Ray starting at \(a\) making angle \(\alpha\) with the positive real axis.
\(|z-z_{1}|+|z-z_{2}| = 2a\) (\(2a> |z_{1}-z_{2}|\)) Ellipse with foci \(z_{1},z_{2}\) and major‑axis length \(2a\).
\(|z-z_{1}|\;|z-z_{2}| = k\) Rectangular hyperbola (focus‑directrix form).

Example – Locus of a Fixed Argument

Find the locus of points satisfying \(\arg(z-2i)=\frac{\pi}{4}\).

  • Interpretation: a ray starting from the point \(2i\) (i.e. \((0,2)\)) making an angle \(\pi/4\) with the positive real axis.
  • Equation in Cartesian form: \(\displaystyle \frac{y-2}{x}= \tan\frac{\pi}{4}=1\;\Longrightarrow\; y = x+2.\)
  • Hence the locus is the straight line \(y=x+2\) for \(x\ge0\) (the ray part).

7. De Moivre’s Theorem

For any integer \(n\) and any real \(\theta\):

\[ \bigl(\cos\theta+i\sin\theta\bigr)^{n}= \cos(n\theta)+i\sin(n\theta), \qquad\text{or}\qquad \bigl(r\operatorname{cis}\theta\bigr)^{n}=r^{n}\operatorname{cis}(n\theta). \]

7.1 n‑th Roots of a Complex Number

If \(z=r\operatorname{cis}\theta\) with \(r>0\), the \(n\) distinct roots are

\[ z^{1/n}=r^{1/n}\operatorname{cis}\!\left(\frac{\theta+2k\pi}{n}\right), \qquad k=0,1,\dots ,n-1. \]

7.2 Expanding Trigonometric Powers

Equating real or imaginary parts after expanding \((\cos\theta+i\sin\theta)^{n}\) yields identities such as

\[ \cos^{3}\theta = \frac{1}{4}\bigl(3\cos\theta+\cos3\theta\bigr),\qquad \sin^{4}\theta = \frac{3}{8}-\frac{1}{2}\cos2\theta+\frac{1}{8}\cos4\theta. \]

8. Worked Example – Solving a Cubic Equation Using De Moivre

Problem: Find all complex solutions of \(z^{3}=8i\).

  1. Write the right‑hand side in polar form: \[ 8i = 8\operatorname{cis}\frac{\pi}{2}. \]
  2. Apply De Moivre’s theorem for the cube root: \[ z = 8^{1/3}\operatorname{cis}\!\left(\frac{\frac{\pi}{2}+2k\pi}{3}\right), \qquad k=0,1,2. \]
  3. Compute \(8^{1/3}=2\) and the three arguments:
    • \(k=0:\;\theta_{0}= \dfrac{\pi/2}{3}= \dfrac{\pi}{6}\) \(\displaystyle z_{0}=2\operatorname{cis}\frac{\pi}{6}=2\Bigl(\frac{\sqrt3}{2}+\frac12 i\Bigr)=\sqrt3+i.\)
    • \(k=1:\;\theta_{1}= \dfrac{\pi/2+2\pi}{3}= \dfrac{5\pi}{6}\) \(\displaystyle z_{1}=2\operatorname{cis}\frac{5\pi}{6}=2\Bigl(-\frac{\sqrt3}{2}+\frac12 i\Bigr)=-\sqrt3+i.\)
    • \(k=2:\;\theta_{2}= \dfrac{\pi/2+4\pi}{3}= \dfrac{3\pi}{2}\) \(\displaystyle z_{2}=2\operatorname{cis}\frac{3\pi}{2}=2(0- i)=-2i.\)
  4. Hence the three solutions are \[ z=\sqrt3+i,\quad z=-\sqrt3+i,\quad z=-2i. \]

9. Quick‑Reference Checklist (Cambridge 9709 – 3.9)

  • Know the definitions of \(\operatorname{Re}(z),\operatorname{Im}(z),|z|,\arg(z),\overline{z}\) and the equality condition.
  • Convert between rectangular and polar forms; always check the quadrant (use atan2 when possible).
  • Use rectangular form for addition/subtraction; polar form for multiplication, division, powers, roots, and trigonometric expansions.
  • Remember the principal argument interval \(-\pi<\arg z\le\pi\) (or \(0\le\arg z<2\pi\) if you prefer).
  • Identify loci quickly:
    • \(|z-c|=k\) → circle.
    • \(\arg(z-a)=\alpha\) → ray from \(a\).
    • \(|z-z_{1}|+|z-z_{2}|=2a\) → ellipse.
    • \(|z-z_{1}|\,|z-z_{2}|=k\) → rectangular hyperbola.
  • Apply De Moivre’s theorem for:
    • powers: \((r\operatorname{cis}\theta)^{n}=r^{n}\operatorname{cis}(n\theta)\),
    • nth‑roots: \(r^{1/n}\operatorname{cis}\bigl(\frac{\theta+2k\pi}{n}\bigr)\),
    • deriving trigonometric identities.

Create an account or Login to take a Quiz

47 views
0 improvement suggestions

Log in to suggest improvements to this note.