Recognise and use function notation such as f(x), f⁻¹(x), fg(x) and f²(x)

Functions – IGCSE Additional Mathematics (0606)

1. Key Terminology (Syllabus 1.1‑1.2)

  • Function – a rule that assigns to each element of a set called the domain exactly one element of another set called the range. We write the rule as \(y=f(x)\).
  • Domain – the set of all permissible input values for the function.
  • Range – the set of all possible output values.
  • One‑to‑one (injective) function – different inputs give different outputs. Horizontal‑line test: a graph is one‑to‑one iff no horizontal line cuts it more than once.
  • Many‑one function – at least two different inputs produce the same output (fails the horizontal‑line test).
  • Inverse function, written \(f^{-1}(x)\) – swaps the roles of domain and range; geometrically it is the reflection of \(y=f(x)\) in the line \(y=x\).
  • Composite function, written \(f\circ g\,(x)\) – apply \(g\) first, then \(f\); i.e. \(f\circ g\,(x)=f\bigl(g(x)\bigr)\).
  • Product of functions, written \(fg(x)\) – simply \(f(x)\cdot g(x)\).
  • Function squared, written \(f^{2}(x)\) – means \([f(x)]^{2}\); it is **not** the second iterate \(f\bigl(f(x)\bigr)\) (which would be written \(f\circ f\,(x)\)).
  • Absolute‑value transformation, \(|f(x)|\) – reflects any part of the graph that lies below the \(x\)-axis above the axis.

2. Determining Domain and Range

Use the following checklist (Cambridge “Domain‑range” requirement):

Type of functionDomain conditionRange comment
Rational \(f(x)=\dfrac{P(x)}{Q(x)}\) Exclude values that make \(Q(x)=0\). Often all real numbers except those excluded.
Even‑root radical \(f(x)=\sqrt[n]{R(x)}\) with \(n\) even Require \(R(x)\ge0\). Output is ≥ 0 (or ≤ 0 for even‑root of a negative‑leading expression).
Logarithmic \(f(x)=\log_a\!R(x)\) ( \(a>0,\ aeq1\) ) Require \(R(x)>0\). Range is all real numbers \(\mathbb{R}\).
Trigonometric – e.g. \(\tan x\) Exclude angles where the function is undefined (e.g. \(\frac{\pi}{2}+k\pi\)). Range depends on the function (e.g. \(\tan x\) has range \(\mathbb{R}\)).

Examples

  1. \(f(x)=\dfrac{1}{x-2}\) → Domain \(xeq2\); Range \(yeq0\).
  2. \(g(x)=\sqrt{5-x}\) → Domain \(x\le5\); Range \(g(x)\ge0\).
  3. \(h(x)=\ln(x+3)\) → Domain \(x>-3\); Range \(\mathbb{R}\).
  4. \(k(x)=\tan x\) (principal period) → Domain \(xeq\frac{\pi}{2}+n\pi\); Range \(\mathbb{R}\).

3. Function Notation at a Glance

NotationMeaningTypical example
\(f(x)\) Value of \(f\) at the argument \(x\) If \(f(x)=2x+3\), then \(f(4)=11\).
\(f^{-1}(x)\) Inverse function – swaps domain and range If \(f(x)=2x+3\), then \(f^{-1}(x)=\dfrac{x-3}{2}\).
\(fg(x)\) Product of two functions: \(f(x)\cdot g(x)\) \(f(x)=x+1,\;g(x)=x-2\;\Rightarrow\;fg(x)=(x+1)(x-2).\)
\(f\circ g\,(x)\) Composite function: \(f\bigl(g(x)\bigr)\) \(f(x)=x^{2},\;g(x)=2x+1\;\Rightarrow\;f\circ g\,(x)=(2x+1)^{2}.\)
\(f^{2}(x)\) Square of the function value: \([f(x)]^{2}\) \(f(x)=x+3\;\Rightarrow\;f^{2}(x)=(x+3)^{2}.\)
\(|f(x)|\) Absolute‑value transformation \(f(x)=x-2\;\Rightarrow\;|f(x)|=|x-2|.\)

4. Using Function Notation (Typical Exam Tasks)

  • Evaluate \(f(x)\) for a given \(x\).
  • Find the domain and range of a given function.
  • State whether a function is one‑to‑one; if not, explain why it has no inverse.
  • Find the inverse function \(f^{-1}(x)\) (when it exists).
  • Calculate the product \(fg(x)\) or the composite \(f\circ g\,(x)\). Emphasise that order matters for composition.
  • Interpret \(f^{2}(x)\) correctly as \([f(x)]^{2}\).
  • Sketch a function together with its inverse to illustrate the reflection about \(y=x\).

5. Finding the Inverse Function

  1. Write the relation as \(y=f(x)\).
  2. Interchange \(x\) and \(y\) (reflect across the line \(y=x\)).
  3. Solve the new equation for \(y\); the resulting expression is \(f^{-1}(x)\).

Example 1 – Linear

\[ \begin{aligned} y &= 3x-5 \\ \text{Swap }x\text{ and }y &: \; x = 3y-5 \\ 3y &= x+5 \\ y &= \frac{x+5}{3} \end{aligned} \qquad\Longrightarrow\qquad f^{-1}(x)=\frac{x+5}{3} \]

Example 2 – Trigonometric (restricted domain)

\[ \begin{aligned} y &= \sin x ,\qquad -\frac{\pi}{2}\le x\le\frac{\pi}{2}\\ \text{Swap }x\text{ and }y &: \; x = \sin y \\ y &= \arcsin x \quad\text{(principal value)}\\ \end{aligned} \qquad\Longrightarrow\qquad f^{-1}(x)=\arcsin x \]

6. Why Some Functions Have No Inverse

A function fails to have an inverse when it is not one‑to‑one. The horizontal‑line test provides a quick visual check: if any horizontal line meets the graph more than once, the function is not invertible on that whole domain.

Counter‑example: \(f(x)=x^{2}\) for all real \(x\). Horizontal line \(y=4\) cuts the graph at \(x=-2\) and \(x=2\); therefore \(f\) is many‑one and has no inverse on \(\mathbb{R}\). An inverse exists only after restricting the domain (e.g. \(x\ge0\)).

7. Composite Functions

  • \(f\circ g\,(x)=f\bigl(g(x)\bigr)\) – apply \(g\) first.
  • \(g\circ f\,(x)=g\bigl(f(x)\bigr)\) – generally different from \(f\circ g\).

Example – Order matters

\[ \begin{aligned} f(x)&=2x+3,\qquad g(x)=x^{2}\\[2mm] f\circ g\,(x)&=2x^{2}+3,\\ g\circ f\,(x)&=(2x+3)^{2}=4x^{2}+12x+9. \end{aligned} \]

8. Product of Functions

Simply multiply the two expressions:

\[ (fg)(x)=f(x)\,g(x). \]

Example

\[ f(x)=x+2,\;g(x)=x-3\;\Longrightarrow\;fg(x)=(x+2)(x-3)=x^{2}-x-6. \]

9. Function Squared – \(f^{2}(x)\)

\(f^{2}(x)\) means \([f(x)]^{2}\). It is **not** the same as the second iterate \(f\bigl(f(x)\bigr)\), which would be written \(f\circ f\,(x)\).

Example

\[ f(x)=\sqrt{x}\;\Longrightarrow\;f^{2}(x)=\bigl(\sqrt{x}\bigr)^{2}=x. \]

10. Absolute‑Value Transformation \(|f(x)|\)

Replacing \(f(x)\) by \(|f(x)|\) reflects any portion of the graph that lies below the \(x\)-axis to an equal position above the axis.

Example

\[ f(x)=x-2\quad\Rightarrow\quad |f(x)|=|x-2|. \] The graph of \(|x-2|\) is a V‑shaped curve obtained by reflecting the part of \(y=x-2\) that is negative (i.e. for \(x<2\)) upward.

11. Sketching a Function and Its Inverse

  1. Draw the graph of \(y=f(x)\) on a set of axes.
  2. Draw the line \(y=x\) (a 45° diagonal).
  3. Reflect each point of the original graph across the line \(y=x\); the reflected curve is the graph of \(y=f^{-1}(x)\).

Worked example – linear

  • Function: \(f(x)=2x+1\). Plot the line.
  • Reflect in \(y=x\). The reflected line has equation \(y=\frac12x-\frac12\), which is exactly \(f^{-1}(x)\).

12. Worked Examples (All Notations)

  1. Evaluation & inverse \(f(x)=4x-7\) • \(f(3)=4(3)-7=5\). • Solve \(y=4x-7\) for \(x\): \(x=\dfrac{y+7}{4}\) → \(f^{-1}(x)=\dfrac{x+7}{4}\).
  2. Product of functions \(g(x)=x^{2}+1,\;f(x)=2x-5\) \(fg(x)=(2x-5)(x^{2}+1)=2x^{3}+2x-5x^{2}-5.\)
  3. Composite function \(h(x)=3x+2\) \(h\circ h\,(x)=h\bigl(3x+2\bigr)=3(3x+2)+2=9x+8.\)
  4. Function squared & self‑inverse \(p(x)=\dfrac{1}{x}\) \(p^{2}(x)=\left(\dfrac{1}{x}\right)^{2}=\dfrac{1}{x^{2}}\). To find the inverse, swap \(x\) and \(y\): \(x=\dfrac{1}{y}\Rightarrow y=\dfrac{1}{x}\); thus \(p^{-1}(x)=\dfrac{1}{x}=p(x)\) (self‑inverse).
  5. Domain & range practice \(q(x)=\dfrac{2}{x+1}\) → Domain \(xeq-1\); Range \(yeq0\). \(r(x)=\sqrt{3-x}\) → Domain \(x\le3\); Range \(r(x)\ge0\).
  6. One‑to‑one test \(s(x)=x^{2}\) (domain \(\mathbb{R}\)) – not one‑to‑one (fails horizontal‑line test). \(t(x)=\ln x\) (domain \(x>0\)) – one‑to‑one (passes the test).

13. Practice Questions

  1. Given \(f(x)=4x-7\):
    • Find \(f(3)\).
    • Find the inverse function \(f^{-1}(x)\).
  2. If \(g(x)=x^{2}+1\) and \(f(x)=2x-5\), compute the product \(fg(x)\).
  3. Let \(h(x)=3x+2\). Write and simplify the composite \(h\circ h\,(x)\).
  4. For \(p(x)=\dfrac{1}{x}\):
    • Find \(p^{2}(x)\).
    • Find \(p^{-1}(x)\) and comment on its relationship to \(p(x)\).
  5. Determine the domain and range of each function:
    • \(q(x)=\dfrac{2}{x+1}\)
    • \(r(x)=\sqrt{3-x}\)
  6. State whether each function is one‑to‑one; justify using the horizontal‑line test:
    • \(s(x)=x^{2}\) (domain \(\mathbb{R}\)).
    • \(t(x)=\ln x\) (domain \(x>0\)).
  7. Sketch \(y=f(x)=2x+1\) together with its inverse on the same axes. Label the line \(y=x\).

14. Answers to Practice Questions

Q.Answer
1 \(f(3)=5\); \(f^{-1}(x)=\dfrac{x+7}{4}\)
2 \(fg(x)= (2x-5)(x^{2}+1)=2x^{3}+2x-5x^{2}-5\)
3 \(h\circ h\,(x)=9x+8\)
4 \(p^{2}(x)=\dfrac{1}{x^{2}}\); \(p^{-1}(x)=\dfrac{1}{x}=p(x)\) (self‑inverse)
5 \(q(x)=\dfrac{2}{x+1}\): Domain \(xeq-1\); Range \(yeq0\).
\(r(x)=\sqrt{3-x}\): Domain \(x\le3\); Range \(r(x)\ge0\).
6 \(s(x)=x^{2}\) – not one‑to‑one on \(\mathbb{R}\) (fails horizontal‑line test).
\(t(x)=\ln x\) – one‑to‑one on its domain \(x>0\) (passes the test).
7 Graph of \(y=2x+1\) (straight line). Its inverse is the reflection across \(y=x\): \(y=\frac12x-\frac12\). Both lines intersect at \((-1,-1)\) and are symmetric about \(y=x\).

Create an account or Login to take a Quiz

45 views
0 improvement suggestions

Log in to suggest improvements to this note.