Find the domain and range of functions, including inverse and composite functions

IGCSE Mathematics (0606) – Complete Syllabus Notes

1. Functions – definitions, domain, range, composite & inverse

  • Function. A rule that assigns to each element $x$ in a set $X$ exactly one element $y$ in a set $Y$. Notation: $y=f(x)$ or $f:x\mapsto y$.
  • Domain. Set of all admissible inputs. Write $\operatorname{Dom}(f)$.
  • Range (image). Set of all actual outputs $y=f(x)$. Write $\operatorname{Ran}(f)$.
  • Codomain. The set $Y$ that the function is declared to map into. In most IGCSE questions $Y=\mathbb R$ unless stated otherwise.
  • Composite function. $(f\circ g)(x)=f\bigl(g(x)\bigr)$. Order matters: $f\circ geq g\circ f$ in general.
  • Inverse function. $f^{-1}$ satisfies $f^{-1}(f(x))=x$ and $f(f^{-1}(x))=x$ for every $x$ in the appropriate domain. Exists only when $f$ is one‑to‑one (bijective) on its domain.

1.1 Determining the domain

  1. Denominators – $x$ cannot make any denominator zero.
  2. Even roots – radicand $\ge0$.
  3. Logarithms – argument $>0$.
  4. Trigonometric restrictions – e.g. $\tan x$ undefined at $x=\frac{\pi}{2}+k\pi$.
  5. Composite – apply the above to each inner function before the outer one.

1.2 Determining the range

  • Algebraic method. Set $y=f(x)$, solve for $x$ in terms of $y$, then apply the domain restrictions to $y$.
  • Graphical reasoning. Sketch the curve (or recall the standard shape) and read off the $y$‑values attained.
  • Known elementary ranges. $\sin x\in[-1,1]$, $e^{x}>0$, $\sqrt{x}\ge0$, etc.
  • Codomain reminder. The range cannot exceed the declared codomain.

1.3 Absolute‑value transformation $y=|f(x)|$

The graph of $|f(x)|$ is obtained by reflecting any part of $y=f(x)$ that lies below the $x$‑axis upwards.

1.4 Inverses – existence & construction

  1. Check the horizontal‑line test (one‑to‑one).
  2. If not one‑to‑one, restrict the domain to a region where it is.
  3. Write $y=f(x)$, swap $x$ and $y$, solve for $y$ → $f^{-1}(x)$.
  4. State: domain$(f^{-1})=$ range$(f)$, range$(f^{-1})=$ domain$(f)$.

1.5 Composite functions – domain

$$\operatorname{Dom}(f\circ g)=\{\,x\in\operatorname{Dom}(g)\mid g(x)\in\operatorname{Dom}(f)\,\}.$$

1.6 Quick‑check checklist (functions)

TaskKey stepsTypical answer form
DomainList all restrictions, intersect them.Interval or set notation.
RangeSolve $y=f(x)$ for $x$, apply domain.Interval or set notation.
Composite $f\circ g$Compute $f(g(x))$, then apply the domain rule.Domain set, expression for $f\circ g$.
InverseHorizontal‑line test → restrict if needed → swap & solve.$f^{-1}(x)$ with domain & range.

2. Quadratic Functions

  • Standard form. $f(x)=ax^{2}+bx+c\;(aeq0)$.
  • Vertex form. $f(x)=a(x-h)^{2}+k$, where $(h,k)$ is the vertex.
  • Completing the square. $ax^{2}+bx+c=a\bigl[(x+\tfrac{b}{2a})^{2}-\tfrac{b^{2}-4ac}{4a^{2}}\bigr]$.
  • Discriminant. $\Delta=b^{2}-4ac$ determines the nature of the roots:
    • $\Delta>0$ – two distinct real roots, graph crosses $x$‑axis twice.
    • $\Delta=0$ – one repeated real root, vertex touches the $x$‑axis.
    • $\Delta<0$ – no real roots, graph does not meet the $x$‑axis.
  • Axis of symmetry. $x=h=-\dfrac{b}{2a}$.
  • Range. If $a>0$, $\operatorname{Ran}= [k,\infty)$; if $a<0$, $\operatorname{Ran}=(-\infty,k]$.

Example – vertex and range

Find the vertex and range of $f(x)=2x^{2}-8x+3$.

  1. Complete the square: $f(x)=2\bigl[x^{2}-4x\bigr]+3=2\bigl[(x-2)^{2}-4\bigr]+3=2(x-2)^{2}-5$.
  2. Vertex $(h,k)=(2,-5)$. Since $a=2>0$, range $[-5,\infty)$.

Quadratic inequalities

Solve $x^{2}-5x+6\le0$.

  • Factor: $(x-2)(x-3)\le0$.
  • Sign chart → solution $2\le x\le3$.

3. Polynomials (degree $\ge2$)

  • Degree. Highest power of $x$ with a non‑zero coefficient.
  • Remainder theorem. For $f(x)$ divided by $(x-a)$, remainder $=f(a)$.
  • Factor theorem. $(x-a)$ is a factor of $f(x)$ iff $f(a)=0$.
  • Long division / synthetic division. Used to factor higher‑degree polynomials.
  • Behaviour at infinity. Sign of leading coefficient determines end‑behaviour.

Worked example – factorising a cubic

Factor $f(x)=x^{3}-6x^{2}+11x-6$.

  1. Test possible integer roots $a=\pm1,\pm2,\pm3,\pm6$. $f(1)=0$, so $(x-1)$ is a factor.
  2. Divide $f(x)$ by $(x-1)$ → $x^{2}-5x+6$.
  3. Factor quadratic: $(x-2)(x-3)$. Hence $f(x)=(x-1)(x-2)(x-3)$.

4. Solving Equations & Inequalities

4.1 Linear equations

Standard form $ax+b=c$. Solution $x=\dfrac{c-b}{a}$ (provided $aeq0$).

4.2 Rational equations

Clear denominators, solve the resulting polynomial, then check for extraneous roots (values that make any original denominator zero).

4.3 Absolute‑value equations

Two cases: $\;|A|=B\;(B\ge0)\;\Longrightarrow\;A=B\text{ or }A=-B$.

4.4 Graphical solution method

Plot $y=f(x)$ and $y=g(x)$; intersections give solutions of $f(x)=g(x)$. Useful for equations that are difficult to solve algebraically.

Example – solving $|2x-5|=x+1$

  1. Require $x+1\ge0\;\Rightarrow\;x\ge-1$.
  2. Case 1: $2x-5=x+1\;\Rightarrow\;x=6$ (satisfies $x\ge-1$).
  3. Case 2: $-(2x-5)=x+1\;\Rightarrow\;-2x+5=x+1\;\Rightarrow\;3x=4\;\Rightarrow\;x=\tfrac{4}{3}$ (also $\ge-1$).
  4. Solutions $x=6,\;\dfrac{4}{3}$.

5. Simultaneous Equations

  • Linear – two variables. Methods: substitution, elimination, or matrix (Cramer's rule – optional).
  • Non‑linear – e.g. quadratic & linear. Substitute the linear expression into the non‑linear one, solve, then back‑substitute.

Example – non‑linear pair

Solve $\begin{cases}y=2x+3\\x^{2}+y=7\end{cases}$.

  1. Substitute $y$: $x^{2}+2x+3=7\;\Rightarrow\;x^{2}+2x-4=0$.
  2. Quadratic formula: $x=\dfrac{-2\pm\sqrt{4+16}}{2}=\dfrac{-2\pm\sqrt{20}}{2}=-1\pm\sqrt5$.
  3. Find $y$ using $y=2x+3$ → $y=2(-1\pm\sqrt5)+3=1\pm2\sqrt5$.

6. Logarithmic & Exponential Functions

  • Exponential form. $y=a^{x}$, $a>0$, $aeq1$.
  • Logarithmic form. $y=\log_{a}x\iff a^{y}=x$.
  • Key laws.
    • $a^{m}a^{n}=a^{m+n}$
    • $\bigl(a^{m}\bigr)^{n}=a^{mn}$
    • $\log_{a}(mn)=\log_{a}m+\log_{a}n$
    • $\log_{a}\!\left(\frac{m}{n}\right)=\log_{a}m-\log_{a}n$
    • $\log_{a}m^{n}=n\log_{a}m$
    • Change of base: $\displaystyle\log_{a}b=\frac{\log_{c}b}{\log_{c}a}$ (commonly $c=10$ or $e$).
  • Graphs. Exponential: horizontal asymptote $y=0$, passes through $(0,1)$. Logarithmic: vertical asymptote $x=0$, passes through $(1,0)$. They are inverses.
  • Solving equations. Isolate the exponential or logarithmic term, then apply the inverse function.

Example – solve $3^{2x-1}=27$

Write $27=3^{3}$, so $3^{2x-1}=3^{3}\Rightarrow2x-1=3\Rightarrow x=2$.

Example – solve $\log_{2}(x+3)=4$

Convert to exponential: $2^{4}=x+3\Rightarrow x=13$.


7. Straight‑Line Graphs

  • Gradient–intercept form. $y=mx+c$, where $m$ is the gradient and $c$ the $y$‑intercept.
  • Two‑point form. $m=\dfrac{y_{2}-y_{1}}{x_{2}-x_{1}}$.
  • Parallel lines. Same gradient $m$.
  • Perpendicular lines. Gradients satisfy $m_{1}m_{2}=-1$ (provided neither is vertical).
  • Intercepts. $x$‑intercept at $x=-\dfrac{c}{m}$ (if $meq0$); $y$‑intercept $c$.

Worked example

Find the equation of the line passing through $(2,5)$ and parallel to $y=3x-4$.

  • Parallel ⇒ same gradient $m=3$.
  • Use point‑slope: $y-5=3(x-2)\;\Rightarrow\;y=3x-1$.

8. Circles

  • Standard equation. $(x-h)^{2}+(y-k)^{2}=r^{2}$, centre $(h,k)$, radius $r$.
  • General form. $x^{2}+y^{2}+Dx+Ey+F=0$ (complete the square to find centre & radius).
  • Chord & diameter. If a chord is $2r\sin\theta$, where $\theta$ is the subtended angle at the centre.
  • Tangent. A line touching the circle at exactly one point; condition: distance from centre to line equals $r$.

Example – find centre & radius

Given $x^{2}+y^{2}-6x+4y+9=0$, rewrite:

  • $(x^{2}-6x)+(y^{2}+4y)=-9$
  • $(x-3)^{2}-9+(y+2)^{2}-4=-9\;\Rightarrow\;(x-3)^{2}+(y+2)^{2}=4$.
  • Centre $(3,-2)$, radius $r=2$.

9. Circular Measure

  • Full circle $=360^{\circ}=2\pi\text{ rad}$.
  • Conversion: $1\text{ rad}= \dfrac{180}{\pi}^{\circ}$, $1^{\circ}= \dfrac{\pi}{180}\text{ rad}$.
  • Arc length. $s=r\theta$ (θ in radians).
  • Sector area. $A=\dfrac{1}{2}r^{2}\theta$ (θ in radians).

Example – sector area

Find the area of a sector with radius $5\,$cm and central angle $45^{\circ}$.

  • Convert: $\theta=45^{\circ}\times\frac{\pi}{180}=\frac{\pi}{4}$ rad.
  • $A=\frac12\cdot5^{2}\cdot\frac{\pi}{4}= \frac{25\pi}{8}\approx9.82\text{ cm}^{2}$.

10. Trigonometry

  • Definitions (right‑angled triangle). $\sin\theta=\dfrac{\text{opp}}{\text{hyp}}$, $\cos\theta=\dfrac{\text{adj}}{\text{hyp}}$, $\tan\theta=\dfrac{\text{opp}}{\text{adj}}$.
  • Reciprocal functions. $\csc\theta=\dfrac1{\sin\theta}$, $\sec\theta=\dfrac1{\cos\theta}$, $\cot\theta=\dfrac1{\tan\theta}$.
  • Pythagorean identities. $\sin^{2}\theta+\cos^{2}\theta=1$, $1+\tan^{2}\theta=\sec^{2}\theta$, $1+\cot^{2}\theta=\csc^{2}\theta$.
  • Solving triangles. Use SOH‑CAH‑TOA, the sine rule, cosine rule, and area formula $\frac12ab\sin C$.
  • Graphs of $\sin x$, $\cos x$, $\tan x$. Amplitude, period $2\pi$ (or $\pi$ for $\tan$), phase shift, vertical shift.

Example – solve $\sin\theta=0.6$ for $0^{\circ}\le\theta<360^{\circ}$

Principal value $\theta_{1}= \sin^{-1}0.6\approx36.9^{\circ}$. Second solution $\theta_{2}=180^{\circ}-\theta_{1}\approx143.1^{\circ}$. Hence $\theta=36.9^{\circ},\;143.1^{\circ}$.


11. Permutations, Combinations & Probability

  • Factorial. $n! = n\,(n-1)\dots 1$, with $0!=1$.
  • Permutation. $P(n,r)=\dfrac{n!}{(n-r)!}$ – ordered selection of $r$ objects from $n$.
  • Combination. $C(n,r)=\binom{n}{r}= \dfrac{n!}{r!(n-r)!}$ – unordered selection.
  • Probability (classical). $P(E)=\dfrac{\text{favourable outcomes}}{\text{total outcomes}}$.
  • Independent events. $P(AB)=P(A)P(B)$.
  • Complementary events. $P(A')=1-P(A)$.

Example – committee selection

From 8 boys and 5 girls, how many ways to choose a committee of 4 with exactly 2 boys?

  • Choose boys: $\binom{8}{2}=28$.
  • Choose girls: $\binom{5}{2}=10$.
  • Total $=28\times10=280$ ways.

12. Series – arithmetic & geometric

  • Arithmetic series. $a, a+d, a+2d,\dots$; $n$‑th term $a_{n}=a+(n-1)d$; sum $S_{n}= \dfrac{n}{2}\bigl(2a+(n-1)d\bigr)=\dfrac{n}{2}(a_{1}+a_{n})$.
  • Geometric series. $a, ar, ar^{2},\dots$; $n$‑th term $a_{n}=ar^{\,n-1}$; sum $S_{n}=a\,\dfrac{1-r^{n}}{1-r}$ ( $req1$ ). For $|r|<1$, infinite sum $S_{\infty}= \dfrac{a}{1-r}$.

Example – sum of first 10 terms

Find $S_{10}$ for $2,5,8,\dots$ (common difference $d=3$).

  • $a=2$, $a_{10}=2+9\cdot3=29$.
  • $S_{10}= \dfrac{10}{2}(2+29)=5\times31=155$.

13. Vectors (plane)

  • Notation. $\vec{u}= \langle u_{1},u_{2}\rangle$ (components) or $u_{1}\mathbf{i}+u_{2}\mathbf{j}$.
  • Magnitude. $|\vec{u}|=\sqrt{u_{1}^{2}+u_{2}^{2}}$.
  • Addition. $\vec{u}+\vec{v}= \langle u_{1}+v_{1},\,u_{2}+v_{2}\rangle$.
  • Scalar multiplication. $k\vec{u}= \langle ku_{1},ku_{2}\rangle$.
  • Dot product. $\vec{u}\cdot\vec{v}=u_{1}v_{1}+u_{2}v_{2}=|\vec{u}||\vec{v}|\cos\theta$.
  • Angle between vectors. $\cos\theta=\dfrac{\vec{u}\cdot\vec{v}}{|\vec{u}||\vec{v}|}$.
  • Applications. Find the resultant of forces, determine whether two lines are parallel/perpendicular, work problems.

Worked example – angle between $\vec{a}=\langle3,4\rangle$ and $\vec{b}=\langle5,0\rangle$

  • $\vec{a}\cdot\vec{b}=3\cdot5+4\cdot0=15$.
  • $|\vec{a}|=5$, $|\vec{b}|=5$.
  • $\cos\theta=\dfrac{15}{5\cdot5}=0.6\;\Rightarrow\;\theta=\cos^{-1}0.6\approx53.1^{\circ}$.

14. Basic Calculus (rates & areas)

  • Derivative (gradient of a curve). For $y=f(x)$, $f'(x)=\displaystyle\lim_{\Delta x\to0}\frac{f(x+\Delta x)-f(x)}{\Delta x}$.
    • Power rule: $\dfrac{d}{dx}x^{n}=nx^{n-1}$.
    • Exponential: $\dfrac{d}{dx}a^{x}=a^{x}\ln a$.
    • Logarithmic: $\dfrac{d}{dx}\ln x=\dfrac1x$.
    • Trigonometric: $\dfrac{d}{dx}\sin x=\cos x$, $\dfrac{d}{dx}\cos x=-\sin x$.
  • Integration (area under a curve). $\displaystyle\int f(x)\,dx$ is the antiderivative. For a definite integral $\int_{a}^{b}f(x)\,dx$, the result is the signed area between the curve and the $x$‑axis.
  • Common antiderivatives.
    • $\int x^{n}\,dx=\dfrac{x^{n+1}}{n+1}+C\;(neq-1)$
    • $\int a^{x}\,dx=\dfrac{a^{x}}{\ln a}+C$
    • $\int \frac{1}{x}\,dx=\ln|x|+C$
    • $\int \sin x\,dx=-\cos x+C$, $\int \cos x\,dx=\sin x+C$

Example – rate of change

If $s(t)=4t^{2}+3t$ (metres), find the speed at $t=5\,$s.

  • Velocity $v(t)=\dfrac{ds}{dt}=8t+3$.
  • At $t=5$, $v=8\cdot5+3=43\,$m s$^{-1}$.

Example – area under $y=x^{2}$ from $x=0$ to $x=3$

$\displaystyle\int_{0}^{3}x^{2}\,dx=\Bigl[\frac{x^{3}}{3}\Bigr]_{0}^{3}= \frac{27}{3}=9\;$ square units.


15. Summary of Key Formulae

TopicKey formulae
Domain / RangeIdentify restrictions from denominators, even roots, logs, trig; solve $y=f(x)$ for $x$ to get range.
Composite$(f\circ g)(x)=f(g(x))$, $\operatorname{Dom}(f\circ g)=\{x\in\operatorname{Dom}(g)\mid g(x)\in\operatorname{Dom}(f)\}$.
InverseSwap $x$ and $y$ in $y=f(x)$, solve for $y$; domain of $f^{-1}$ = range of $f$.
Quadratic$\Delta=b^{2}-4ac$, vertex $(-b/2a,\;f(-b/2a))$, range $[k,\infty)$ or $(-\infty,k]$.
PolynomialsRemainder theorem $f(a)=\text{remainder}$; factor theorem $(x-a)$ factor iff $f(a)=0$.
Log/Exp$\log_{a}b=\dfrac{\ln b}{\ln a}$; $a^{\log_{a}x}=x$; $e^{\ln x}=x$.
Line$y=mx+c$, $m_{1}m_{2}=-1$ for perpendicular.
Circle$(x-h)^{2}+(y-k)^{2}=r^{2}$.
Circular measure$s=r\theta$, $A=\frac12 r^{2}\theta$ (θ rad).
TrigSOH‑CAH‑TOA, $\sin^{2}+\cos^{2}=1$, $1+\tan^{2}=\sec^{2}$.
Perm/Comb$P(n,r)=\dfrac{n!}{(n-r)!}$, $C(n,r)=\dfrac{n!}{r!(n-r)!}$.
SeriesArithmetic $S_{n}=n/2\,(2a+(n-1)d)$; Geometric $S_{n}=a(1-r^{n})/(1-r)$.
Vectors$\vec{u}\cdot\vec{v}=|\vec{u}||\vec{v}|\cos\theta$.
CalculusPower rule $d/dx\;x^{n}=nx^{n-1}$; $\int a^{x}dx=a^{x}/\ln a$.

16. Practice Questions (selected)

  1. Domain & range. Find the domain and range of $h(x)=\dfrac{1}{\sqrt{4-x}}$.
    Answer: Domain $x<4$; range $(0,\infty)$.
  2. Composite domain. $p(x)=\ln(x-1)$, $q(x)=e^{2x}+1$. Determine $\operatorname{Dom}(p\circ q)$.
    Answer: $q(x)>1$ for all $x$, so $\operatorname{Dom}= \mathbb R$.
  3. Inverse verification. Show that $f(x)=\dfrac{x}{x+2}$ is its own inverse. State domain & range.
    Answer: $f(f(x))=x$, domain $xeq-2$, range $\mathbb R\setminus\{1

Create an account or Login to take a Quiz

41 views
0 improvement suggestions

Log in to suggest improvements to this note.