IGCSE Additional Mathematics – Full Syllabus Notes
1. Functions – Refresher
- Definition: A function \(y=f(x)\) assigns exactly one output \(y\) to each permissible input \(x\).
- Domain & Range
- Find the domain by locating values that make the expression undefined:
- Division by zero → denominator ≠ 0
- Even roots → radicand ≥ 0
- Logarithms → argument > 0
- Range is the set of possible \(y\)‑values once the domain is fixed.
Example: \(f(x)=\dfrac{\sqrt{x-2}}{x-5}\)
• Denominator ≠ 0 ⇒ \(xeq5\)
• Radicand ≥ 0 ⇒ \(x-2\ge0\) ⇒ \(x\ge2\)
⇒ Domain: \([2,5)\cup(5,\infty)\).
- One‑to‑one (injective) functions
- Horizontal‑line test: every horizontal line cuts the graph at most once.
- Monotonicity test: if the function is strictly increasing or decreasing on its domain, it is one‑to‑one.
Example: \(f(x)=x^{2}\) is not one‑to‑one on \(\mathbb R\) (fails the horizontal‑line test). Restricting to \(x\ge0\) makes it strictly increasing, hence one‑to‑one.
- Inverse functions
- Ensure the original function is one‑to‑one (restrict the domain if necessary).
- Swap \(x\) and \(y\) and solve for the new \(y\).
- State the domain of the inverse (which is the range of the original) and its range (the restricted domain).
Worked example (restricted quadratic): \(y=2x^{2}+3,\;x\ge0\)
- Swap: \(x=2y^{2}+3\).
- Isolate \(y\): \(y^{2}=\dfrac{x-3}{2}\;\Rightarrow\;y=\sqrt{\dfrac{x-3}{2}}\) (positive root because \(x\ge0\)).
- Inverse: \(\displaystyle f^{-1}(x)=\sqrt{\frac{x-3}{2}},\qquad x\ge3.\)
Graphical note: the graph of an inverse is the reflection of the original graph in the line \(y=x\).
- Composite (combined) functions
- \((f\circ g)(x)=f\bigl(g(x)\bigr)\) – apply \(g\) first, then \(f\).
- \((g\circ f)(x)=g\bigl(f(x)\bigr)\) – the order matters.
| Function | Expression |
| \(f(x)=2x+1\) | |
| \(g(x)=x^{2}\) | |
| \(f\circ g\) | \(f(g(x))=2x^{2}+1\) |
| \(g\circ f\) | \(g(f(x))=(2x+1)^{2}=4x^{2}+4x+1\) |
2. Quadratic Functions
3. Factors of Polynomials
- Remainder theorem: When \(P(x)\) is divided by \((x-a)\) the remainder is \(P(a)\).
Proof sketch: Write \(P(x)=(x-a)Q(x)+R\). Substituting \(x=a\) gives \(P(a)=R\).
- Factor theorem: \((x-a)\) is a factor of \(P(x)\) iff \(P(a)=0\).
- Synthetic division – a quick way to divide by a linear factor and to test possible integer roots.
- Worked example – factorising a cubic:
\[
P(x)=x^{3}-6x^{2}+11x-6.
\]
- Test integer candidates \(\pm1,\pm2,\pm3,\pm6\). \(P(1)=0\) ⇒ \((x-1)\) is a factor.
- Synthetic division by \((x-1)\) gives quotient \(x^{2}-5x+6\).
- Factor the quadratic: \((x-2)(x-3)\).
- Result: \(\displaystyle P(x)=(x-1)(x-2)(x-3).\)
4. Equations & Inequalities (including Moduli)
- Linear equations: solve by isolation or substitution.
- Quadratic equations: factorise, complete the square, or use the quadratic formula \(\displaystyle x=\frac{-b\pm\sqrt{\Delta}}{2a}\).
- Higher‑order equations: factorisation, substitution, or numerical methods (when required by the syllabus).
- Absolute‑value equations \(|ax+b|=c\):
- If \(c<0\) → no solution.
- Otherwise solve the two linear equations \(ax+b=c\) and \(ax+b=-c\).
- Absolute‑value inequalities:
- \(|ax+b|
- \(|ax+b|>c\) ⇒ \(ax+b-c\) (use “or”).
- Example: Solve \(|2x-3|\le5\).
- \(-5\le2x-3\le5\).
- Add 3: \(-2\le2x\le8\).
- Divide by 2: \(-1\le x\le4\).
5. Simultaneous Equations
- Linear – linear: substitution or elimination.
- Linear – quadratic: substitute the linear expression into the quadratic, solve the resulting quadratic, then back‑substitute.
- Worked example:
\[
\begin{cases}
y = 2x+1\\[2pt]
x^{2}+y^{2}=25
\end{cases}
\]
- Substitute \(y\): \(x^{2}+(2x+1)^{2}=25\).
- Expand: \(x^{2}+4x^{2}+4x+1=25\Rightarrow5x^{2}+4x-24=0\).
- Factor: \((5x-6)(x+4)=0\) ⇒ \(x=\dfrac{6}{5}\) or \(x=-4\).
- Corresponding \(y\): \(y=2\cdot\dfrac{6}{5}+1=\dfrac{17}{5}\) and \(y=-7\).
6. Logarithmic & Exponential Functions
- Exponential form: \(y=a^{x}\) with \(a>0,\;aeq1\).
- Natural exponential: \(e^{x}\) where \(e\approx2.71828\).
- Logarithm definition: \(y=\log_{a}x \iff a^{y}=x\).
- Key identities
- \(\log_{a}(bc)=\log_{a}b+\log_{a}c\)
- \(\log_{a}\!\left(\dfrac{b}{c}\right)=\log_{a}b-\log_{a}c\)
- \(\log_{a}(b^{k})=k\log_{a}b\)
- \(\log_{a}x=\dfrac{\ln x}{\ln a}\) (change of base).
- Example – solving an exponential equation:
\[
3^{2x-1}=27.
\]
- Write RHS as a power of 3: \(27=3^{3}\).
- Equate exponents: \(2x-1=3\).
- Solve: \(2x=4\Rightarrow x=2.\)
7. Straight‑Line Graphs
- General equation: \(y=mx+c\) where \(m\) is the gradient and \(c\) the \(y\)-intercept.
- Gradient formula: \(m=\dfrac{\Delta y}{\Delta x}\).
- Transformations
- Vertical shift: \(y=mx+(c+k)\) (up \(k\) units if \(k>0\)).
- Horizontal shift: \(y=m(x-h)+c\) (right \(h\) units if \(h>0\)).
- Reflection in the \(x\)-axis: \(y=-mx-c\).
- Example – equation of a line through two points \((2,5)\) and \((6,13)\):
- Gradient: \(m=\dfrac{13-5}{6-2}=2\).
- Point‑slope form: \(y-5=2(x-2)\) ⇒ \(y=2x+1\).
8. Coordinate Geometry of the Circle
- Standard form: \((x-h)^{2}+(y-k)^{2}=r^{2}\) where \((h,k)\) is the centre and \(r\) the radius.
- General form: \(x^{2}+y^{2}+2gx+2fy+c=0\)
Centre \((-g,-f)\), radius \(\displaystyle r=\sqrt{g^{2}+f^{2}-c}\) (provided \(g^{2}+f^{2}>c\)).
- Tangent at \((x_{1},y_{1})\) (point lies on the circle):
\[
(x_{1}-h)(x-h)+(y_{1}-k)(y-k)=r^{2}
\]
or, in general form,
\[
xx_{1}+yy_{1}+g(x+x_{1})+f(y+y_{1})+c=0.
\]
- Example – circle through three points \((1,0),\;(0,2),\;(-1,0)\):
- By symmetry the centre lies on the \(y\)-axis ⇒ let it be \((0,k)\).
- Distance to \((1,0)\): \(1+k^{2}=r^{2}\).
- Distance to \((0,2)\): \((2-k)^{2}=r^{2}\).
- Equate: \(1+k^{2}=4-4k+k^{2}\) ⇒ \(k=\dfrac34\).
- Radius: \(r^{2}=1+\bigl(\tfrac34\bigr)^{2}= \dfrac{25}{16}\) ⇒ \(r=\dfrac54\).
- Equation: \((x)^{2}+\bigl(y-\tfrac34\bigr)^{2}= \bigl(\tfrac54\bigr)^{2}.\)
9. Circular Measure
- Radian: the angle subtended by an arc whose length equals the radius.
- Conversion:
\[
\theta_{\text{rad}}=\frac{\pi}{180}\,\theta_{\deg},\qquad
\theta_{\deg}= \frac{180}{\pi}\,\theta_{\text{rad}}.
\]
- Arc length: \(s=r\theta\) (θ in radians).
- Sector area: \(A=\dfrac12 r^{2}\theta\).
- Example – 45° sector of a circle, \(r=7\) cm:
- \(\theta=\dfrac{45\pi}{180}= \dfrac{\pi}{4}\) rad.
- Arc length: \(s=7\cdot\dfrac{\pi}{4}= \dfrac{7\pi}{4}\) cm.
- Sector area: \(A=\tfrac12\cdot7^{2}\cdot\dfrac{\pi}{4}= \dfrac{49\pi}{8}\) cm\(^2\).
10. Trigonometry
| Function | Definition (right‑angled triangle) | Key identities |
| \(\sin\theta\) | \(\dfrac{\text{opp}}{\text{hyp}}\) | \(\sin^{2}\theta+\cos^{2}\theta=1\) |
| \(\cos\theta\) | \(\dfrac{\text{adj}}{\text{hyp}}\) | \(\tan\theta=\dfrac{\sin\theta}{\cos\theta}\) |
| \(\tan\theta\) | \(\dfrac{\text{opp}}{\text{adj}}\) | \(\sin(2\theta)=2\sin\theta\cos\theta\) |
| \(\csc\theta\) | \(\dfrac{\text{hyp}}{\text{opp}}\) | \(\cos(2\theta)=\cos^{2}\theta-\sin^{2}\theta\) |
| \(\sec\theta\) | \(\dfrac{\text{hyp}}{\text{adj}}\) | \(\tan(\alpha\pm\beta)=\dfrac{\tan\alpha\pm\tan\beta}{1\mp\tan\alpha\tan\beta}\) |
| \(\cot\theta\) | \(\dfrac{\text{adj}}{\text{opp}}\) | |
Example – solve \(\sin2x=\sqrt3\cos x\) for \(0^{\circ}\le x\le360^{\circ}\)
- Use \(\sin2x=2\sin x\cos x\): \(2\sin x\cos x=\sqrt3\cos x\).
- Factor \(\cos x\): \(\cos x\,(2\sin x-\sqrt3)=0\).
- Case 1: \(\cos x=0\) ⇒ \(x=90^{\circ},\,270^{\circ}\).
- Case 2: \(2\sin x-\sqrt3=0\) ⇒ \(\sin x=\dfrac{\sqrt3}{2}\) ⇒ \(x=60^{\circ},\,120^{\circ}\).
- Solution set: \(\{60^{\circ},\,90^{\circ},\,120^{\circ},\,270^{\circ}\}\).
11. Integration – Definite Integrals & Plane Areas
- Antiderivative (indefinite integral):
\[
\int f(x)\,dx = F(x)+C\qquad\text{where }F'(x)=f(x).
\]
Common formulas (to be memorised):
- \(\displaystyle\int x^{n}\,dx=\frac{x^{n+1}}{n+1}+C\;(neq-1)\)
- \(\displaystyle\int \frac{dx}{x}= \ln|x|+C\)
- \(\displaystyle\int e^{x}\,dx=e^{x}+C\)
- \(\displaystyle\int a^{x}\,dx=\frac{a^{x}}{\ln a}+C\;(a>0,\;aeq1)\)
- \(\displaystyle\int \sin x\,dx=-\cos x+C,\quad\int \cos x\,dx=\sin x+C\)
- Definite integral (area under a curve):
\[
\int_{a}^{b} f(x)\,dx = \bigl[F(x)\bigr]_{a}^{b}=F(b)-F(a),
\]
where \(F\) is any antiderivative of \(f\). This is the Fundamental Theorem of Calculus.
- Geometric interpretation
- If \(f(x)\ge0\) on \([a,b]\) then \(\displaystyle\int_{a}^{b}f(x)\,dx\) equals the signed area between the curve and the \(x\)-axis.
- If the curve lies below the axis, the integral is negative; the actual (positive) area is \(\bigl|\int_{a}^{b}f(x)\,dx\bigr|\).
- Area between a curve and a straight line
- Find the points of intersection (solve \(f(x)=g(x)\)).
- Determine which function is on top in each sub‑interval.
- Integrate the difference:
\[
\text{Area}= \int_{x_{1}}^{x_{2}}\bigl|\,f(x)-g(x)\,\bigr|\,dx
=\int_{x_{1}}^{x_{2}}\bigl(f(x)-g(x)\bigr)\,dx
\quad\text{(if }f\ge g\text{).}
\]
- Area between two curves (no straight line involved):
\[
A=\int_{a}^{b}\bigl|\,f(x)-g(x)\,\bigr|\,dx.
\]
Use the same three‑step procedure as above.
- Typical exam‑style examples
Example 11‑1 – Evaluate a definite integral
Find \(\displaystyle\int_{1}^{4}(3x^{2}-2x+1)\,dx\).
- Antiderivative: \(F(x)=3\cdot\frac{x^{3}}{3}-2\cdot\frac{x^{2}}{2}+x = x^{3}-x^{2}+x.\)
- Apply limits: \(F(4)-F(1)=\bigl(4^{3}-4^{2}+4\bigr)-\bigl(1^{3}-1^{2}+1\bigr)=\bigl(64-16+4\bigr)-\bigl(1-1+1\bigr)=52-1=51.\)
- Result: \(\displaystyle\int_{1}^{4}(3x^{2}-2x+1)\,dx=51.\)
Example 11‑2 – Area between a curve and the \(x\)-axis
Find the area enclosed by \(y=x^{2}-4\) and the \(x\)-axis.
- Intersection with the axis: set \(x^{2}-4=0\) ⇒ \(x=\pm2.\)
- Sketch shows the parabola is below the axis on \([-2,2]\); therefore the required area is
\[
A=\Bigl|\int_{-2}^{2}(x^{2}-4)\,dx\Bigr|.
\]
- Antiderivative: \(\displaystyle\int(x^{2}-4)\,dx=\frac{x^{3}}{3}-4x.\)
- Evaluate: \(\bigl[\tfrac{x^{3}}{3}-4x\bigr]_{-2}^{2}= \Bigl(\tfrac{8}{3}-8\Bigr)-\Bigl(-\tfrac{8}{3}+8\Bigr)=\Bigl(-\tfrac{16}{3}\Bigr)-\Bigl(\tfrac{16}{3}\Bigr)=-\tfrac{32}{3}.\)
- Take absolute value: \(A=\dfrac{32}{3}\) square units.
Example 11‑3 – Area between a curve and a straight line
Find the area enclosed by the parabola \(y= x^{2}\) and the line \(y=2x+3\).
- Intersection points: solve \(x^{2}=2x+3\) ⇒ \(x^{2}-2x-3=0\) ⇒ \((x-3)(x+1)=0\) ⇒ \(x=-1,\;3.\)
- For \(-1\le x\le3\) the line lies above the parabola (check at \(x=0\): \(0<3\)).
- Area:
\[
A=\int_{-1}^{3}\bigl[(2x+3)-x^{2}\bigr]\,dx.
\]
- Antiderivative: \(\displaystyle\int(2x+3-x^{2})dx = x^{2}+3x-\frac{x^{3}}{3}.\)
- Evaluate:
\[
\Bigl[x^{2}+3x-\frac{x^{3}}{3}\Bigr]_{-1}^{3}
=\Bigl(9+9-9\Bigr)-\Bigl(1-3+\frac{1}{3}\Bigr)
=9-(-\tfrac{5}{3})= \frac{32}{3}.
\]
- Result: \(A=\dfrac{32}{3}\) square units.
Example 11‑4 – Area between two curves (different functions of \(x\) and \(y\))
Find the area bounded by \(y=\sqrt{x}\), the line \(y=0\) and the vertical line \(x=4\).
- The region is under the curve \(\sqrt{x}\) from \(x=0\) to \(x=4\).
- Integral: \(A=\displaystyle\int_{0}^{4}\sqrt{x}\,dx=\int_{0}^{4}x^{1/2}dx.\)
- Antiderivative: \(\displaystyle\frac{x^{3/2}}{3/2}= \frac{2}{3}x^{3/2}.\)
- Evaluate: \(\frac{2}{3}\bigl[4^{3/2}-0\bigr]=\frac{2}{3}\times8= \frac{16}{3}\) square units.
Key steps to remember for any area problem
- Identify the bounding curves/lines.
- Find all points of intersection (solve equations).
- Decide which curve is upper (or left/right for \(y\)-integrals).
- Set up the definite integral of the difference (top – bottom).
- Integrate, apply limits, and take absolute values if the integrand becomes negative.
These notes cover the core IGCSE Additional Mathematics syllabus, present the required methods in a clear, exam‑focused order, and include worked examples that illustrate each technique. Use them for revision, practice, and as a quick reference during examinations.