IGCSE Additional Mathematics (0606) – Comprehensive Summary Notes
1. Functions
1.1 Key terminology
| Term | Definition / What to check |
| Function | A rule that assigns to each element $x$ in a domain a unique element $y$ in a range. |
| One‑to‑one (injective) | If $f(x_1)=f(x_2)$ implies $x_1=x_2$. Graphically, it passes the horizontal‑line test. |
| Many‑to‑one | Two different $x$‑values give the same $y$ (fails the horizontal‑line test). Such a function has no inverse. |
| Inverse function $f^{-1}$ | Exists only for one‑to‑one functions. Obtain by swapping $x$ and $y$ in $y=f(x)$ and solving for $y$. |
| Composition $f\circ g$ | $(f\circ g)(x)=f\bigl(g(x)\bigr)$. Domain = $\{x\mid x\in\text{dom}(g)\text{ and }g(x)\in\text{dom}(f)\}$. |
1.2 How to decide if a function is invertible
- Identify the domain.
- Apply the horizontal‑line test (or prove $f'(x)>0$ or $f'(x)<0$ on the domain).
- If the test fails, restrict the domain to a monotonic interval before finding an inverse.
Example 1 – Invertibility
Determine whether $f(x)=x^{2}$ is invertible on the following domains and write the inverse where it exists.
- Domain $x\ge0$: Passes the horizontal‑line test.
$y=x^{2}\;\Rightarrow\;x=\sqrt{y}\;$ ⇒ $f^{-1}(x)=\sqrt{x}$, $x\ge0$.
- Domain $x\in\mathbb{R}$: Fails the test (e.g. $f(-2)=f(2)=4$). No inverse.
1.3 Sketching a function
- Find intercepts (set $x=0$ for $y$‑intercept, $y=0$ for $x$‑intercepts).
- Identify symmetry (even, odd, or neither).
- Determine monotonicity using $f'(x)$ (if known) or by testing intervals.
- Locate asymptotes (vertical, horizontal, slant) where applicable.
- Plot a few key points and sketch the curve.
2. Quadratic Functions
2.1 Standard and vertex forms
- Standard: $y=ax^{2}+bx+c\;(aeq0)$.
- Vertex (completed‑square) form: $y=a(x-h)^{2}+k$, where $h=-\dfrac{b}{2a}$ and $k=f(h)$.
2.2 Discriminant
For $ax^{2}+bx+c=0$, $D=b^{2}-4ac$.
| D | Nature of roots |
| $>0$ | Two distinct real roots. |
| $=0$ | One repeated real root (tangent to the $x$‑axis). |
| $<0$ | No real roots (parabola does not cross the $x$‑axis). |
2.3 Solving quadratic inequalities
- Find the roots (or vertex) of the corresponding quadratic equation.
- Draw a sign chart or test a point in each interval defined by the roots.
- Include the equality sign if the inequality is “$\le$” or “$\ge$”.
Example 2 – Solving a quadratic inequality
Solve $2x^{2}-8x+6\le0$.
- Divide by 2: $x^{2}-4x+3\le0$.
- Factor: $(x-1)(x-3)\le0$.
- Sign chart: negative between the roots.
$\displaystyle 1\le x\le3$.
3. Polynomials – Factor & Remainder Theorems
3.1 Statements
- Remainder theorem: When $P(x)$ is divided by $(x-a)$, the remainder is $P(a)$.
- Factor theorem: $(x-a)$ is a factor of $P(x)$ iff $P(a)=0$.
3.2 Synthetic division (quick method for linear divisors)
- Write the coefficients of $P(x)$.
- Bring down the leading coefficient.
- Multiply by $a$, add to the next coefficient, repeat.
- The final number is the remainder; the row above gives the coefficients of the reduced polynomial.
Example 3 – Factorising a cubic
Factor $P(x)=x^{3}-6x^{2}+11x-6$.
- Possible rational roots: $\pm1,\pm2,\pm3,\pm6$.
- Test $x=1$: $P(1)=0$ ⇒ $(x-1)$ is a factor.
- Synthetic division by $x-1$ yields $x^{2}-5x+6$.
- Factor the quadratic: $(x-2)(x-3)$.
- Result: $P(x)=(x-1)(x-2)(x-3)$.
4. Equations & Inequalities
4.1 Linear equations
$ax+b=0\;\Rightarrow\;x=-\dfrac{b}{a}$ (provided $aeq0$).
4.2 Quadratic equations
- Factorising (when possible).
- Completing the square.
- Quadratic formula: $x=\dfrac{-b\pm\sqrt{b^{2}-4ac}}{2a}$.
4.3 Absolute‑value equations & inequalities
- Equation $|ax+b|=c$ ($c\ge0$) ⇒ $ax+b=c$ or $ax+b=-c$.
- Inequality $|ax+b|
- Inequality $|ax+b|>c$ ⇒ $ax+b-c$.
4.4 Modulus (two absolute values)
Solve each absolute value separately, then combine the resulting conditions using intersection (for “and”) or union (for “or”).
Example 4 – Solving an absolute‑value inequality
Solve $|2x-5|\le3$.
- $-3\le2x-5\le3$.
- Add 5: $2\le2x\le8$.
- Divide by 2: $1\le x\le4$.
5. Simultaneous Equations
5.1 Linear pairs
Use substitution or elimination. Choose the method that gives the simplest arithmetic.
5.2 Non‑linear pairs
- Substitution: express one variable from one equation and substitute.
- Elimination: manipulate equations to remove a term (often after squaring or factoring).
- Factorisation after substitution is common (e.g., quadratic in one variable).
Example 5 – Non‑linear simultaneous equations
Solve $\displaystyle\begin{cases} xy=6 \\ x+y=5 \end{cases}$.
- From $x+y=5$, $y=5-x$.
- Substitute: $x(5-x)=6\;\Rightarrow\;-x^{2}+5x-6=0$.
- Multiply by $-1$: $x^{2}-5x+6=0\;\Rightarrow\;(x-2)(x-3)=0$.
- Solutions: $(x,y)=(2,3)$ or $(3,2)$.
6. Logarithmic & Exponential Functions
6.1 Forms and basic properties
- Exponential: $y=a^{x}$, $a>0$, $aeq1$.
- Logarithmic: $x=\log_{a}y\;\Longleftrightarrow\;y=a^{x}$.
6.2 Logarithm laws
| $\log_{a}(mn)$ | = $\log_{a}m+\log_{a}n$ |
| $\log_{a}\!\left(\dfrac{m}{n}\right)$ | = $\log_{a}m-\log_{a}n$ |
| $\log_{a}(m^{k})$ | = $k\log_{a}m$ |
| Change of base | $\displaystyle\log_{a}b=\frac{\log_{c}b}{\log_{c}a}$ (any convenient base $c$, often $10$ or $e$) |
6.3 Natural logarithm
$\ln x=\log_{e}x$, where $e\approx2.71828$.
6.4 Solving exponential equations
Take logarithms of both sides (any base) and isolate the exponent.
Example 6 – Solving an exponential equation
Solve $5^{2x-1}=125$.
- Write $125=5^{3}$.
- Equate exponents: $2x-1=3\;\Rightarrow\;2x=4\;\Rightarrow\;x=2$.
7. Straight‑Line Graphs (Linearisation)
7.1 General straight‑line equation
$y=mx+c$, where $m$ = gradient, $c$ = $y$‑intercept.
7.2 Transforming common non‑linear relationships to a straight line
| Original form | Transformation | Resulting straight‑line equation |
| $y=Ax^{n}$ (power law) | Take common (or natural) logs | $\log y=n\log x+\log A$ |
| $y=Ae^{kx}$ (exponential) | Take natural log | $\ln y=kx+\ln A$ |
| $y=\dfrac{A}{x}$ (inverse) | Plot $y$ against $\dfrac1x$ | $y=\!A\left(\dfrac1x\right)$ (gradient $A$) |
| $y=A\log x$ (logarithmic) | Plot $y$ against $\log x$ | $y=A\log x$ (gradient $A$) |
Example 7 – Linearising a power relationship
Data are believed to follow $y=2.5\,x^{1.8}$. Show how to obtain a straight line.
- Take common logs: $\log y=\log2.5+1.8\log x$.
- Plot $\log y$ (vertical) against $\log x$ (horizontal).
Gradient should be $1.8$, intercept $\log2.5\approx0.398$.
8. Coordinate Geometry of the Circle
8.1 Standard equation
$(x-h)^{2}+(y-k)^{2}=r^{2}$, centre $C(h,k)$, radius $r$.
8.2 Finding points of intersection
- Substitute the line equation $y=mx+c$ (or $x=ky+d$) into the circle.
- Solve the resulting quadratic for the remaining variable.
- Use the discriminant to decide: $D>0$ (two points), $D=0$ (tangent), $D<0$ (no real intersection).
8.3 Tangent at a known point $(x_{1},y_{1})$ on the circle
Using the point‑gradient form derived from the circle:
\[
(x_{1}-h)(x-h)+(y_{1}-k)(y-k)=r^{2}
\]
which simplifies to the linear equation
\[
(x_{1}-h)x+(y_{1}-k)y = r^{2}+hx_{1}+ky_{1}-h^{2}-k^{2}.
\]
8.4 Two‑circle problems
- Subtract the two circle equations to obtain the line joining their centres (or the radical line).
- Combine this line with either circle equation to solve for the intersection points.
Example 8 – Tangent to a circle
Find the equation of the tangent to $(x-2)^{2}+(y+1)^{2}=9$ at $P(5,-1)$.
- Centre $C(2,-1)$, radius $r=3$.
- Radius $CP$ is horizontal ⇒ slope $0$ ⇒ tangent is vertical: $x=5$.
- Using the formula: $(5-2)(x-2)+( -1+1)(y+1)=9\;\Rightarrow\;3(x-2)=9\;\Rightarrow\;x=5$.
Calculus – Differentiation in Connected Rates, Small Increments & Approximations
1. Core ideas
- The derivative $\displaystyle\frac{dy}{dx}$ gives the instantaneous rate of change of $y$ with respect to $x$.
- In the IGCSE syllabus three applications are emphasised:
- Related (connected) rates of change.
- Small (infinitesimal) increments $\Delta x,\;\Delta y$.
- Linear (tangent‑line) approximations.
2. Connected (Related) Rates of Change
2.1 General procedure
- Write the relationship linking the variables (often a geometric formula).
- Differentiate **implicitly** with respect to the independent variable (usually time $t$) using the chain rule:
\[
\frac{d}{dt}\bigl[f(x)\bigr]=f'(x)\,\frac{dx}{dt}.
\]
- Insert the known values of the variables and any given rates.
- Solve algebraically for the required unknown rate.
2.2 Common patterns
| Relationship | Typical differentiation |
| Area of a circle $A=\pi r^{2}$ | $\displaystyle\frac{dA}{dt}=2\pi r\,\frac{dr}{dt}$ |
| Volume of a sphere $V=\frac{4}{3}\pi r^{3}$ | $\displaystyle\frac{dV}{dt}=4\pi r^{2}\,\frac{dr}{dt}$ |
| Perimeter of a rectangle $P=2(l+w)$ | $\displaystyle\frac{dP}{dt}=2\!\left(\frac{dl}{dt}+\frac{dw}{dt}\right)$ |
| Right‑triangle $x^{2}+y^{2}=z^{2}$ | $2x\frac{dx}{dt}+2y\frac{dy}{dt}=2z\frac{dz}{dt}$ |
Example 9 – Expanding circular oil spill (revisited)
Given $dr/dt=0.5\;\text{m min}^{-1}$ at $r=10\,$m, find $dA/dt$.
\[
\frac{dA}{dt}=2\pi r\frac{dr}{dt}=2\pi(10)(0.5)=10\pi\;\text{m}^{2}\!\text{min}^{-1}.
\]
Example 10 – Ladder sliding down a wall
A 5 m ladder leans against a vertical wall. The foot slides away at $1.2\;\text{m s}^{-1}$. Find the speed of the top when the foot is $3\;$m from the wall.
- Relation (Pythagoras): $x^{2}+y^{2}=5^{2}$, where $x$ = distance of foot, $y$ = height of top.
- Differentiate: $2x\frac{dx}{dt}+2y\frac{dy}{dt}=0\;\Rightarrow\;x\frac{dx}{dt}+y\frac{dy}{dt}=0$.
- When $x=3$, $y=\sqrt{5^{2}-3^{2}}=4$ m. Substitute:
$3(1.2)+4\frac{dy}{dt}=0\;\Rightarrow\;\frac{dy}{dt}=-\dfrac{3.6}{4}=-0.9\;\text{m s}^{-1}$.
- Interpretation: the top is descending at $0.9\;\text{m s}^{-1}$.
3. Small Increments ($\Delta x$, $\Delta y$)
3.1 Concept
If $x$ changes by a small amount $\Delta x$, the corresponding change in $y=f(x)$ is approximated by
\[
\Delta y\;\approx\;f'(x)\,\Delta x.
\]
This is the linearisation of $f$ at the point $x$.
3.2 When to use
- When the exact change is difficult to compute but $\Delta x$ is known to be small.
- In error‑propagation problems (e.g., measurement uncertainties).
Example 11 – Approximate change in a square’s area
A square has side $s=10.0\,$cm. The side length is measured to the nearest $0.1\,$cm. Estimate the maximum possible error in the area $A=s^{2}$.
- Derivative: $\displaystyle\frac{dA}{ds}=2s$.
- Maximum $\Delta s=0.05\,$cm (half the unit of the last decimal place).
- Approximate error: $\Delta A\approx2s\,\Delta s=2(10.0)(0.05)=1.0\;\text{cm}^{2}$.
4. Linear Approximations (Tangent‑Line Estimates)
4.1 Formula
The tangent line to $y=f(x)$ at $x=a$ is
\[
y\approx f(a)+f'(a)(x-a).
\]
This provides a quick estimate of $f(x)$ for $x$ close to $a$.
4.2 Commonly used approximations
| Function | Linearisation at $x=a$ |
| $\sqrt{x}$ | $\displaystyle\sqrt{a}+\frac{1}{2\sqrt{a}}(x-a)$ |
| $\ln x$ | $\displaystyle\ln a+\frac{1}{a}(x-a)$ |
| $e^{x}$ | $\displaystyle e^{a}+e^{a}(x-a)$ |
| $\sin x$ (radians) | $\displaystyle\sin a+\cos a\,(x-a)$ |
| $\cos x$ (radians) | $\displaystyle\cos a-\sin a\,(x-a)$ |
Example 12 – Estimate $\sqrt{4.1}$
- Choose $a=4$ (easy square root). $f(x)=\sqrt{x}$, $f'(x)=\dfrac{1}{2\sqrt{x}}$.
- Linearisation: $\sqrt{4.1}\approx\sqrt{4}+\frac{1}{2\sqrt{4}}(4.1-4)=2+\frac{1}{4}(0.1)=2+0.025=2.025$.
- Actual value $=2.0249\ldots$, confirming the accuracy.
Example 13 – Approximate $\ln(1.05)$
- Take $a=1$, $f(x)=\ln x$, $f'(x)=1/x$.
- Linearisation: $\ln(1.05)\approx\ln1+\frac{1}{1}(1.05-1)=0+0.05=0.05$.
- Actual $\ln(1.05)=0.04879\ldots$ – good for a quick estimate.
5. Summary of When to Use Each Technique
| Situation | Best tool |
| Two quantities linked by a known equation, and you know one rate of change. | Related‑rates differentiation. |
| Exact change is hard to compute but the increment $\Delta x$ is tiny. | Small‑increment approximation $\Delta y\approx f'(x)\Delta x$. |
| Need a quick numerical estimate of $f(x)$ near a point where $f(a)$ and $f'(a)$ are simple. | Linear (tangent‑line) approximation $f(a)+f'(a)(x-a)$. |
6. Practice Questions (selected)
- When a spherical balloon is being inflated, its radius increases at $0.3\;\text{cm s}^{-1}$. Find the rate at which its volume is increasing when the radius is $5\,$cm.
- A car travels along a straight road. Its position is $s(t)=4t^{2}+3t$ (metres, $t$ in seconds). Approximate the change in position between $t=2\,$s and $t=2.1\,$s using the small‑increment method.
- Use a linear approximation to estimate $\cos(0.1)$ radians.
- A conical tank has radius $r$ and height $h$ related by $r=0.5h$. Water is being pumped in so that the height rises at $0.02\;$m s$^{-1}$. Find the rate at which the volume of water is increasing when $h=4\;$m.
Answers (for teacher’s reference):
- $\displaystyle\frac{dV}{dt}=4\pi r^{2}\frac{dr}{dt}=4\pi(5)^{2}(0.3)=30\pi\;\text{cm}^{3}\!\text{s}^{-1}$.
- $\displaystyle ds/dt=8t+3$, so at $t=2$, $ds/dt=19\;\text{m s}^{-1}$. Approximate $\Delta s\approx19(0.1)=1.9\;$m.
- $\displaystyle\cos x\approx1-\frac{x^{2}}{2}$ near $0$. For $x=0.1$, $\cos(0.1)\approx1-\frac{0.01}{2}=0.995$ (actual $0.995004\ldots$).
- Volume of cone $V=\frac13\pi r^{2}h=\frac13\pi(0.5h)^{2}h=\frac{\pi}{12}h^{3}$.
$dV/dt=\frac{\pi}{4}h^{2}\,dh/dt=\frac{\pi}{4}(4)^{2}(0.02)=0.32\pi\;\text{m}^{3}\!\text{s}^{-1}$.