Identify and use the standard symbols for logic gates

Cambridge IGCSE Computer Science 0478 – Boolean Logic

Learning objective

Identify and use the standard schematic symbols for the basic logic gates and move fluently between a textual description, a Boolean expression, a truth‑table and a circuit diagram.


1. Symbol key – “gate profile” (Cambridge schematic)

The table below shows the exact Cambridge symbol for each gate, its common name, the Boolean notation used in the syllabus and a concise verbal definition of the gate’s function.

Gate Cambridge symbol Boolean expression Function (in words)
AND AND gate – D‑shaped, two inputs \(A\!\cdot\!B\) (or \(AB\)) Outputs 1 only when **both** inputs are 1.
OR OR gate – curved front, two inputs \(A + B\) Outputs 1 when **at least one** input is 1.
NOT NOT gate – triangle with small circle \(\overline{A}\) Outputs the opposite (inverse) of the single input.
NAND NAND gate – AND symbol with small circle \(\overline{A\!\cdot\!B}\) Outputs 0 only when **both** inputs are 1 (the opposite of AND).
NOR NOR gate – OR symbol with small circle \(\overline{A + B}\) Outputs 1 only when **both** inputs are 0 (the opposite of OR).
XOR XOR gate – OR with extra curved line \(A \oplus B\) Outputs 1 when **exactly one** of the inputs is 1.
XNOR XNOR gate – XOR symbol with small circle \(\overline{A \oplus B}\) Outputs 1 when the two inputs are **equal** (both 0 or both 1).

2. Truth tables for the two‑input gates

Each gate’s complete truth table is reproduced below for quick reference.

GateABF
AND000
010
100
111
OR000
011
101
111
NOT (single input)01
10
NAND001
011
101
110
NOR001
010
100
110
XOR000
011
101
110
XNOR001
010
100
111

3. Using the symbols in Boolean expressions

  • AND – write \(A\!\cdot\!B\) or simply \(AB\).
  • OR – write \(A + B\).
  • NOT – write \(\overline{A}\) (a bar over the variable) or !A in programming style.
  • NAND – \(\overline{A\!\cdot\!B}\).
  • NOR – \(\overline{A + B}\).
  • XOR – \(A \oplus B\) (true when exactly one input is true).
  • XNOR – \(\overline{A \oplus B}\) (true when the inputs are equal).

When drawing a circuit the same symbols are used; the Boolean expression is the “textual” counterpart of the diagram.


4. Converting between description, expression, truth table and circuit

  1. English description → Boolean expression – replace “and” with “·”, “or” with “+”, “not”/“false” with an over‑bar.
  2. Expression → Truth table – list all possible input combinations (2ⁿ rows for n inputs) and evaluate the expression.
  3. Expression → Circuit diagram – use the Cambridge symbols that match each operator; combine them in the order dictated by parentheses.
  4. Circuit diagram → Expression – read the diagram from left to right (or top to bottom), writing the corresponding Boolean operators.

5. Worked example – from a problem statement to a circuit

Problem statement:

“The output F should be true when A is true **and** either B is false **or** C is true.”
  1. Translate the English description into a Boolean expression.
    • “A is true” → \(A\)
    • “B is false” → \(\overline{B}\)
    • “C is true” → \(C\)
    • “either B is false **or** C is true” → \(\overline{B}+C\)
    • “A is true **and** (…)” → \(A\!\cdot\!(\overline{B}+C)\)

    Hence \(F = A\!\cdot\!(\overline{B}+C)\).

  2. Construct the truth table. (Three inputs → eight rows)
    ABC\(\overline{B}\)\(\overline{B}+C\)F = A·(\(\overline{B}+C\))
    000110
    001110
    010000
    011010
    100111
    101111
    110000
    111011
  3. Draw the circuit using Cambridge symbols.
    • NOT gate on input B → \(\overline{B}\).
    • OR gate combining \(\overline{B}\) and C → \(\overline{B}+C\).
    • AND gate combining the OR output with A → final output F.
    Circuit for F = A·(¬B + C)
    Logical circuit that implements \(F = A\!\cdot\!(\overline{B}+C)\) using Cambridge symbols.

6. Additional example – building a three‑input NAND gate

The syllabus only requires two‑input symbols, but a three‑input NAND can be constructed by cascading two‑input NAND gates.

  1. First NAND: inputs A and B → \(X = \overline{A\!\cdot\!B}\).
  2. Second NAND: inputs X and C → \(F = \overline{X\!\cdot\!C}= \overline{\overline{A\!\cdot\!B}\!\cdot\!C}\).
  3. Using De Morgan’s law, the overall function simplifies to \(\overline{A\!\cdot\!B\!\cdot\!C}\) – a three‑input NAND.
Two‑stage NAND circuit for three inputs
Two‑stage construction of a three‑input NAND using only the standard two‑input NAND symbol.

7. Practice questions (exam‑style)

  1. From description to expression – Write the Boolean expression for a circuit that outputs true only when both A and B are false.
    Answer: \(F = \overline{A}\!\cdot\!\overline{B}\) (or \(F = \overline{A + B}\)).
  2. Identify the symbol – Which Cambridge schematic symbol corresponds to the expression \(\overline{A + B}\)?
    Answer: The **NOR** gate (OR symbol with a small circle on the output).
  3. From expression to circuit (word description) – List the gates required to implement \(F = (A\!\cdot\!B) + (\overline{C})\).
    Answer: ONE AND gate (inputs A, B), ONE NOT gate (input C), ONE OR gate (inputs the AND output and the NOT output).
  4. From circuit to expression – The circuit below uses a NOT gate on input A, an OR gate on inputs B and C, and an AND gate that combines the NOT output with the OR output. Write the Boolean expression for the overall output F.
    Circuit: NOT(A) → AND with (B OR C)
    Practice circuit (NOT‑A, OR‑(B,C), AND‑both).
    Answer: \(F = \overline{A}\!\cdot\!(B + C)\).
  5. Complete the truth table – Fill in the missing column for the gate marked “XOR”.
    ABF (XOR)
    000
    011
    101
    110
  6. Design challenge (multi‑gate) – Design a circuit that outputs 1 only when an odd number of the three inputs A, B, C are 1. Provide (i) the Boolean expression, (ii) the truth table, and (iii) a sketch using Cambridge symbols.
    Solution outline:
    • Expression: \(F = A\!\oplus\!B\!\oplus\!C\) (equivalently \((A\!\oplus\!B)\!\oplus\!C\)).
    • Truth table: 1 for rows 001, 010, 100, 111; 0 otherwise.
    • Circuit: two XOR gates in series – first XOR A and B, second XOR the result with C (use the standard XOR symbol).

8. Quick reference sheet (print‑friendly)

Copy the table below onto a single A4 sheet for fast revision before the exam.

GateSymbolBooleanFunction (words)
ANDAND\(A\!\cdot\!B\)1 only when both inputs are 1
OROR\(A + B\)1 when at least one input is 1
NOTNOT\(\overline{A}\)Inverse of the input
NANDNAND\(\overline{A\!\cdot\!B}\)0 only when both inputs are 1
NORNOR\(\overline{A + B}\)1 only when both inputs are 0
XORXOR\(A \oplus B\)1 when exactly one input is 1
XNORXNOR\(\overline{A \oplus B}\)1 when inputs are equal

Create an account or Login to take a Quiz

45 views
0 improvement suggestions

Log in to suggest improvements to this note.