Calculate reacting masses in simple proportions. Calculations will not involve the mole concept

Stoichiometry – Formulae, Relative Masses & the Mole (IGCSE Chemistry 0620)

Learning Objectives (AO1‑AO3)

  • Recall and use the definitions of relative atomic mass (Ar) and relative molecular mass (Mr).
  • Write correct chemical formulas, word equations and **balanced** symbol equations (including state symbols s, l, g, aq).
  • Apply the laws of definite and multiple proportions.
  • Understand the mole, Avogadro’s constant and molar volume (24 dm³ mol⁻¹ at r.t.p.).
  • Convert between mass, moles, number of particles and gas volume.
  • Calculate masses, volumes or concentrations of reactants and products using:
    • simple proportional (no‑mole) method, and
    • the mole concept where required.
  • Derive empirical and molecular formulas from percentage composition.

Key Concepts

Relative Atomic Mass (Ar)

Mass of an atom relative to 1/12 of a carbon‑12 atom. Values are dimensionless.

Relative Molecular Mass (Mr)

Sum of the Ar values of all atoms in a molecule. Important relationship: molar mass (M) in g mol⁻¹ = Mr.

The Mole

  • 1 mol = 6.02 × 1023 particles (Avogadro’s constant, NA).
  • Mass of 1 mol of a substance = its molar mass (M = Mr) in grams.
  • Molar volume at r.t.p. (25 °C, 1 atm): 1 mol gas occupies 24 dm³.

Concentration (c)

Amount of solute per unit volume.

  • Mass concentration: c (g dm⁻³) = m (g) ÷ V (dm³)
  • Molar concentration: c (mol dm⁻³) = n (mol) ÷ V (dm³)

Laws of Proportion

  • Law of definite proportions: A given compound always contains the same elements in the same mass ratio.
  • Law of multiple proportions: When two elements form more than one compound, the masses of one element that combine with a fixed mass of the other are in a simple whole‑number ratio.

Relative Atomic Masses (Ar) – Elements 1 – 20

ElementSymbolAr
HydrogenH1
HeliumHe4
LithiumLi7
BerylliumBe9
BoronB11
CarbonC12
NitrogenN14
OxygenO16
FluorineF19
NeonNe20
SodiumNa23
MagnesiumMg24
AluminiumAl27
SiliconSi28
PhosphorusP31
SulphurS32
ChlorineCl35.5
ArgonAr40
PotassiumK39
CalciumCa40

Calculating Relative Molecular Mass (Mr)

Add the Ar values of all atoms in the formula.

Example: Water, H₂O

MrH₂O = 2 × ArH + 1 × ArO = 2 × 1 + 16 = 18

Conversions Involving the Mole

  • Mass ↔ Moles: n (mol) = m (g) ÷ M (g mol⁻¹)
  • Moles ↔ Particles: N = n × NA
  • Gas volume ↔ Moles (r.t.p.): V (dm³) = n × 24

Simple Proportion (No‑Mole) Method

This method uses the mass ratios that arise directly from the balanced equation and the Mr values.

  1. Write and **balance** the chemical equation (include state symbols).
  2. Calculate the Mr of each reactant and product.
  3. Set up a proportion using the **mass‑to‑Mr** ratios: \[ \frac{m_1}{\text{Mr}_1} = \frac{m_2}{\text{Mr}_2} = \dots \] where \(m_i\) is the mass of substance i.
  4. Insert the known mass(es) and solve for the unknown mass.

Worked Example 1 – Combustion of Magnesium (no‑mole)

Balanced equation (including states): Mg(s) + ½ O₂(g) → MgO(s)

SubstanceFormulaMr
MgMg24
O (from ½ O₂)O16
MgOMgO40

Mass proportion:

\[ \frac{m_{\text{Mg}}}{24} = \frac{m_{\text{O}}}{16} = \frac{m_{\text{MgO}}}{40} \]

If 12 g Mg react:

  • O required: \(m_{\text{O}} = 12 \text{g} \times \frac{16}{24} = 8 \text{g}\)
  • MgO formed: \(m_{\text{MgO}} = 12 \text{g} \times \frac{40}{24} = 20 \text{g}\)

Worked Example 2 – Formation of Water (no‑mole)

Balanced equation (states): 2 H₂(g) + O₂(g) → 2 H₂O(l)

SubstanceMr
H₂2
O₂32
H₂O18

Proportion (using the coefficient 2 for H₂ and H₂O):

\[ \frac{m_{\text{H₂}}}{2} = \frac{m_{\text{H₂O}}}{18} \]

Given 10 g H₂:

\[ m_{\text{H₂O}} = 10 \text{g} \times \frac{18}{2} = 90 \text{g} \]

Using the Mole Concept (when required)

Follow the standard three‑step route:

  1. Convert the given mass to moles (using M = Mr).
  2. Use the stoichiometric coefficients to relate moles of reactants and products.
  3. Convert the required moles back to mass (or volume for gases).

Empirical & Molecular Formulas

These are derived from percentage composition and the given molar mass.

  1. Assume a 100 g sample → percentages become masses in grams.
  2. Convert each mass to moles: \(n = \frac{m}{\text{Ar}}\).
  3. Divide all mole values by the smallest mole number.
  4. Round to the nearest whole number → empirical formula.
  5. Calculate empirical‑formula mass (E).
    Find the factor \(k = \dfrac{\text{molar mass}}{E}\).
    Multiply each subscript in the empirical formula by k → molecular formula.

Worked Example – C, H, O Compound

Given: 40 % C, 6.7 % H, 53.3 % O; molar mass = 180 g mol⁻¹.

  1. Masses: C = 40 g, H = 6.7 g, O = 53.3 g.
  2. Moles: C = 40 ÷ 12 = 3.33 mol; H = 6.7 ÷ 1 = 6.70 mol; O = 53.3 ÷ 16 = 3.33 mol.
  3. Divide by smallest (3.33): C ≈ 1, H ≈ 2, O ≈ 1 → empirical formula CH₂O.
  4. Empirical mass = 12 + 2 × 1 + 16 = 30 g mol⁻¹.
  5. k = 180 ÷ 30 = 6 → molecular formula C₆H₁₂O₆.

Law of Multiple Proportions – Quick Check

Carbon and oxygen form CO and CO₂.

  • Mass of O that combines with 12 g C in CO: 16 g.
  • Mass of O that combines with 12 g C in CO₂: 32 g.

Ratio = 32 : 16 = 2 : 1 – a simple whole‑number ratio, confirming the law.

Practice Questions

  1. Calcium reacts with chlorine gas to form calcium chloride.
    • Write the balanced equation (include states).
    • Calculate the mass of chlorine required when 40 g of calcium are used.
  2. When 10 g of hydrogen reacts with excess oxygen to form water, what mass of water is produced?
  3. Magnesium reacts with nitrogen to give magnesium nitride, Mg₃N₂. If 12 g of magnesium are used, how many grams of nitrogen are required?
  4. A sample of a compound contains 52.14 % C, 34.73 % O and 13.13 % H. Its molar mass is 180 g mol⁻¹. Determine its empirical and molecular formulas.
  5. At r.t.p., 0.75 mol of a gas occupies 18 dm³. What is the mass of the gas if its molar mass is 44 g mol⁻¹?
  6. A solution contains 58 g of NaCl dissolved in 250 cm³ of water. Calculate its concentration in:
    • g dm⁻³
    • mol dm⁻³

Answers to Practice Questions

  1. Balanced equation (states): 2 Ca(s) + Cl₂(g) → 2 CaCl₂(s)

    Mr values: Ca = 40, Cl₂ = 71, CaCl₂ = 111

    Proportion: \(\displaystyle \frac{m_{\text{Ca}}}{40} = \frac{m_{\text{Cl₂}}}{71}\)

    Mass of Cl₂ required: \(m_{\text{Cl₂}} = 40 \text{g} \times \frac{71}{40} = 71 \text{g}\).

  2. Balanced equation (states): 2 H₂(g) + O₂(g) → 2 H₂O(l)

    Proportion: \(\displaystyle \frac{m_{\text{H₂}}}{2} = \frac{m_{\text{H₂O}}}{18}\)

    Mass of water: \(m_{\text{H₂O}} = 10 \text{g} \times \frac{18}{2} = 90 \text{g}\).

  3. Balanced equation (states): 3 Mg(s) + N₂(g) → Mg₃N₂(s)

    Mr values: Mg = 24, N₂ = 28, Mg₃N₂ = 100

    Using the coefficient 3 for Mg:

    \[ \frac{m_{\text{Mg}}}{3 \times 24} = \frac{m_{\text{N₂}}}{28} \]

    Mass of N₂ required: \(m_{\text{N₂}} = 12 \text{g} \times \frac{28}{72} = 4.67 \text{g}\) (2 dp).

  4. Assume 100 g sample: C = 52.14 g, O = 34.73 g, H = 13.13 g.

    Moles: C = 52.14 ÷ 12 = 4.345 mol; O = 34.73 ÷ 16 = 2.171 mol; H = 13.13 ÷ 1 = 13.13 mol.

    Divide by smallest (2.171): C ≈ 2.00, O ≈ 1.00, H ≈ 6.05 → empirical formula C₂H₆O.

    Empirical mass = 2 × 12 + 6 × 1 + 16 = 46 g mol⁻¹.

    k = 180 ÷ 46 ≈ 3.91 ≈ 4 (nearest whole number). Molecular formula = C₈H₂₄O₄.

  5. Moles of gas: \(n = \dfrac{V}{24} = \dfrac{18 \text{dm³}}{24 \text{dm³ mol⁻¹}} = 0.75 \text{mol}\) (given).

    Mass = n × M = 0.75 mol × 44 g mol⁻¹ = 33 g.

  6. Volume = 250 cm³ = 0.250 dm³.

    • Mass concentration: \(c = \dfrac{58 \text{g}}{0.250 \text{dm³}} = 232 \text{g dm⁻³}\).
    • Molar mass of NaCl ≈ 58.5 g mol⁻¹.
      Moles = 58 g ÷ 58.5 g mol⁻¹ = 0.992 mol.
      Molar concentration: \(c = \dfrac{0.992 \text{mol}}{0.250 \text{dm³}} = 3.97 \text{mol dm⁻³}\) (2 dp).

Create an account or Login to take a Quiz

43 views
0 improvement suggestions

Log in to suggest improvements to this note.