Graphs of functions: linear, quadratic, cubic, reciprocal, exponential

IGCSE Mathematics 0580 – Algebra: Graphs of Functions

This set of notes covers the five families of functions required for the Cambridge IGCSE Mathematics (0580) syllabus (2025‑2027). Core material is essential for all candidates; sections marked Extended are useful for higher‑level work (E‑questions).

1. Linear Functions (Core)

Worked example – Sketching a linear function

Sketch y = 2x – 3.

  1. Gradient  = 2 → rising line.
  2. y‑intercept (0, −3).
  3. x‑intercept x = 3/2 → (1.5, 0).
  4. Plot the two intercepts and draw the straight line through them.

2. Quadratic Functions (Core)

Worked example – Using the factored form

Sketch y = –(x – 1)(x + 2).

  1. Roots are x = 1 and x = −2 → points (1, 0) and (−2, 0).
  2. Since  = −1 < 0, the parabola opens downwards.
  3. Axis of symmetry x = (1 + (−2))/2 = −0.5.
  4. Vertex plug x = −0.5 into the equation → y = –(−0.5 – 1)(−0.5 + 2) = –(−1.5)(1.5) = 2.25. Vertex (−0.5, 2.25).
  5. Plot the two roots, the vertex, and draw a smooth parabola.

3. Cubic Functions (Core + Extended)

Worked example – Sketching a cubic (Core)

Sketch y = (x – 1)(x + 1)(x – 2).

  1. Expand (optional) → y = x³ – 2x² – x + 2 so  = 1 > 0.
  2. Roots: x = 1, −1, 2 → points (1,0), (−1,0), (2,0).
  3. End behaviour: rises to +∞ on the right, falls to –∞ on the left.
  4. Plot the three intercepts, draw a smooth curve that starts low on the left, passes through (−1,0), rises to a maximum between (−1,0) and (1,0), falls through (1,0), reaches a minimum between (1,0) and (2,0), then rises through (2,0) and continues upwards.

Worked example – Inflection point (Extended)

Find the inflection point of y = 2x³ – 6x + 4.

  1. Identify  = 2, b = 0 (there is no x² term).
  2. Inflection x‑coordinate x = –b/(3a) = 0.
  3. y‑coordinate y = 2·0³ – 6·0 + 4 = 4.
  4. Inflection point (0, 4).

4. Reciprocal Functions (Core + Extended)

  • Basic form (Core requirement): y = k / x, k ≠ 0
  • General (Extended) form: y = k / (x – h) + c
  • Domain: x ≠ 0 (Core) or x ≠ h (Extended)
  • Range: y ≠ 0 (Core) or y ≠ c (Extended)
  • Asymptotes
    • Vertical x = 0 (Core) or x = h (Extended)
    • Horizontal y = 0 (Core) or y = c (Extended)
  • Intercepts
    • y‑intercept set x = 0 → y = k/(‑h) + c (only when h ≠ 0)
    • x‑intercept set y = 0 → x = h – k/c (only when c ≠ 0)
  • Shape
    • k > 0 → branches in quadrants I & III relative to the asymptotes.
    • k < 0 → branches in quadrants II & IV.
  • Transformations
    • Horizontal shift h moves the vertical asymptote to x = h.
    • Vertical shift c moves the horizontal asymptote to y = c.
    • Vertical stretch/compression |k| changes how close the curve gets to the axes.
    • Reflection in the x‑axis change the sign of k.

Worked example – Shifts and asymptotes (Extended)

Sketch y = –3 / (x – 2) + 1.

  1. Vertical asymptote x = 2.
  2. Horizontal asymptote y = 1.
  3. k = –3 < 0 → branches in quadrants II & IV relative to the asymptotes.
  4. Find intercepts:
    • y‑intercept: x = 0 → y = –3/(0‑2) + 1 = –3/(‑2) + 1 = 1.5 + 1 = 2.5 → (0, 2.5).
    • x‑intercept: set y = 0 → 0 = –3/(x‑2) + 1 → –1 = –3/(x‑2) → 1 = 3/(x‑2) → x‑2 = 3 → x = 5 → (5, 0).
  5. Plot the asymptotes as dashed lines, mark the intercepts, and draw the two hyperbolic branches respecting the asymptotes.

5. Exponential Functions (Core + Extended)

  • Core form (required): y = a·bˣ, a ≠ 0, b > 0, b ≠ 1
  • Extended form (vertical shift): y = a·bˣ + c
  • Domain: ℝ
  • Range
    • If a > 0 → y > c (or y > 0 when c = 0)
    • If a < 0 → y < c
  • Horizontal asymptote
    • Core form y = 0
    • Extended form y = c
  • Growth vs. decay
    • Growth when b > 1
    • Decay when 0 < b < 1
  • Intercepts
    • y‑intercept x = 0 → y = a + c
    • x‑intercept (if it exists) solve a·bˣ + c = 0 → x = log₍b₎(−c⁄a) provided −c⁄a > 0
  • Transformations (Core)
    • Vertical stretch/compression multiply by a.
    • Horizontal stretch/compression replace x by kx ( equivalent to changing the base to b^{1/k}).
    • Reflection in the x‑axis change the sign of a.
    • Vertical shift add c (only in the extended form).

Worked example – Exponential with a vertical shift (Extended)

Sketch y = 2·(½)ˣ – 3.

  1. Base b = ½ → decay (curve falls as x increases).
  2. a = 2 > 0, c = ‑3 → horizontal asymptote y = ‑3.
  3. y‑intercept: x = 0 → y = 2·1 – 3 = ‑1 → (0, ‑1).
  4. x‑intercept: solve 2·(½)ˣ – 3 = 0 → (½)ˣ = 3/2 → take log base ½: x = log₍½₎(3/2) = –log₂(3/2) ≈ –0.585 → (‑0.585, 0).
  5. Plot the asymptote y = ‑3 as a dashed line, mark the intercepts, and draw the curve approaching y = ‑3 from above as x → +∞ and rising steeply as x → ‑∞.

6. Extended‑Only Topic: Surds & Rationalising Denominators

Although not part of the core graphing syllabus, simplifying surds is required for many extended questions (E1.18).

  • Basic surd rules
    • √(ab) = √a·√b  (when a, b ≥ 0)
    • √a / √b = √(a⁄b)
    • (√a)² = a
  • Rationalising a denominator
    • Single surd: 1 / √a = √a / a
    • Binomial of the form a ± √b: multiply numerator and denominator by the conjugate a ∓ √b.

Comparison of the Five Function Families

Family General equation (Core) Domain Range Key asymptote(s) Typical shape
Linear y = ax + b or x = k None Straight line (incl. vertical line)
Quadratic y = ax² + bx + c y ≥ k (a > 0) or y ≤ k (a < 0) None Parabola (opens up or down)
Cubic y = ax³ + bx² + cx + d None S‑shaped curve (up to two turning points, one inflection point in extended work)
Reciprocal y = k / x (Extended: y = k/(x‑h) + c) x ≠ 0 (Extended: x ≠ h) y ≠ 0 (Extended: y ≠ c) Vertical x = 0 and Horizontal y = 0 (Extended: x = h, y = c) Two hyperbolic branches
Exponential y = a·bˣ (Extended: y = a·bˣ + c) y > c (a > 0) or y < c (a < 0) Horizontal y = 0 (Extended: y = c) Rapid increase (b > 1) or decrease (0 < b < 1)
48 views
0 improvement suggestions

Log in to suggest improvements to this note.